Return to search

On Computational Methods for the Valuation of Credit Derivatives

A credit derivative is a financial instrument whose value depends on the credit risk of an underlying asset or assets. Credit risk is the possibility that the obligor fails to honor any payment obligation. This thesis proposes four new computational methods for the valuation of credit derivatives.

Compared with synthetic collateralized debt obligations (CDOs) or basket default swaps (BDS), the value of which depends on the defaults of a prescribed underlying portfolio, a forward-starting CDO or BDS has a random underlying portfolio, as some ``names'' may default before the CDO or BDS starts. We develop an approach to convert a forward product to an equivalent standard one. Therefore, we avoid having to consider the default combinations in the period between the start of the forward contract and the start of the associated CDO or BDS. In addition, we propose a hybrid method combining Monte Carlo simulation with an analytical method to obtain an effective method for pricing forward-starting BDS.

Current factor copula models are static and fail to calibrate consistently against market quotes. To overcome this deficiency, we develop a novel chaining technique to build a multi-period factor copula model from several one-period factor copula models. This allows the default correlations to be time-dependent, thereby allowing the model to fit market quotes consistently. Previously developed multi-period factor copula models require multi-dimensional integration, usually computed by Monte Carlo simulation, which makes the calibration extremely time consuming. Our chaining method, on the other hand, possesses the Markov property. This allows us to compute the portfolio loss distribution of a completely homogeneous pool analytically.

The multi-period factor copula is a discrete-time dynamic model. As a first step towards developing a continuous-time dynamic model, we model the default of an underlying by the first hitting time of a Wiener process, which starts from a random initial state. We find an explicit relation between the default distribution and the initial state distribution of the Wiener process. Furthermore, conditions on the existence of such a relation are discussed. This approach allows us to match market quotes consistently.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/24923
Date02 September 2010
CreatorsZhang, Wanhe
ContributorsJackson, Kenneth, Kreinin, Alex
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds