This thesis presents how to estimate the length of a power cable using the MaximumLikelihood Estimate (MLE) technique by using Matlab. The model of the power cableis evaluated in the time domain with additive white Gaussian noise. The statistics havebeen used to evaluate the performance of the estimator, by repeating the experiment fora large number of samples where the random additive noise is generated for each sample.The estimated sample variance is compared to the theoretical Cramer Raw lower Bound(CRLB) for unbiased estimators. At the end of thesis, numerical results are presentedthat show when the resulting sample variance is close to the CRLB, and hence that theperformance of the estimator will be more accurate.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-46583 |
Date | January 2015 |
Creators | Mansour, Tony, Murtaja, Majdi |
Publisher | Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds