Return to search

Bioaccumulation of organochlorine pesticides and biomarker responses in Hydrocynus vittatus and Synodontis zambezensis from the Lower Phongolo River and Floodplain, KwaZulu-Natal, South Africa

M.Sc. (Zoology) / Concern has been shown by Ezemvelo KZN Wildlife for the state of the Lower Pongolo River and Floodplain due to the ever increasing urban and industrial development in the area. This increase in development poses a threat to the fish populations within the system and their ability to support the surrounding communities. Continued spraying of pesticides e.g. DDT within the area are adding to stresses placed on the fish populations through decreasing water quality. The effectiveness of environmental water flows suggested by White et al. (1984), have never been assessed by conservation authorities. This means that the authorities have been unable to fulfil their legislative obligations to establish management and conservation plans (Hughes et al., 2001). Work on the biological responses of fish to anthropogenic stressors such as organic pollutants and metals; have been conducted by a group of experts in the field of ecological health. This section of the project focusses on two fish species, Hydrocynus vittatus and Synodontis zambezensis, sampled within the study area and used for biomarkers and tissue chemical level determination. Standard techniques were applied for Organochlorine Pesticide (OCP) analysis according to Yohannes et al. (2013) and these results have been compared to biomarker responses which have also been completed following standard protocols. Results found within both fish species, show the relationship between accumulation of toxicants and biomarker responses. The highest levels of ΣOCPs where found within H. vittatus at (Mean ± SE) 1101.61 ± 610.97 ng/g lipid weight, the highest constituent being technical grade Dichlorodiphenyltrichloroethane (DDT). High levels of ΣDDT were also found in S. zambezensis, but were lower than levels in H. vittatus and these levels correspond with positioning of each species within the food web. H. vittatus occupies a much higher level in the food web as they are top predators and S. zambezensis falls lower down on the food web due to their reliance on detritus and only small invertebrate species for food. Biomarker responses are clearly affected by bioaccumulation levels and this is especially evident within H. vittatus as Achetylcholinesterase (AChE) is greatly inhibited by high levels of ΣDDT. Changes in the level of biomarker responses are not as apparent in S. zambezensis and this is believed to be food web linked, due to differences in bioconcentration. Data collected during this study will contribute to baseline data on S. zambezensis and add to already accumulated data on H. vittatus. This new data will also help with the improvement of or alteration to already present monitoring programmes in the study area.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:13664
Date01 July 2015
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.005 seconds