O silício é o material-base para a indústria de microeletrônica e tem acompanhado a evolução para a nanoeletrônica. Em várias aplicações é importante o processo de química molhada que prevê a presença de moléculas de água na superfície do semicondutor. Todavia, muito pouco ainda é conhecido, teórica e experimentalmente, sobre os mecanismos e as estruturas resultantes da reação da molécula de H2O sobre Si. Aqui, nós apresentamos nosso estudo da dissociação de uma molécula de água sobre as superfícies Si(100)(2x1) (superfície limpa) e Si(100)(2x1):H superfcie monohidrogenada). Nossos resultados foram obtidos com a Teoria do Funcional da Densidade (DFT), enquanto os caminhos de menor energia para a decomposição da molécula sobre a superfície foram obtidos com a metodologia denominada CI-NEB (Climbing Image - Nudging Elastic Band). Nossos resultados mostraram que a dissociação da molécula de água sobre a superfície limpa é independente do sítio de ataque à superf´cie e esta interação ocorre de maneira correlacionada. O produto HSiSiOH desta reação é estável, e a posterior decomposição ocorre via energia térmica. Neste caso, nós mostramos que a transferência do átomo de oxigênio para o dímero é energética e cineticamente favorável em relação à oxidação de sítios subsuperficiais. A superfície monohidrogenda mostra-se muito resistente ao ataque oxidativo. Constatamos que alguns processos oxidativos tem dependêencia com o sítio de ataque, enquanto outros são indiferentes se a interação ocorre em regiões de vale ou sobre a fileira de dímeros. Nossos resultados evidenciam que a rota de ataque sugerida pelos experimentais nao se mostrou cineticamente viável. Assim, nós propomos duas novas rotas oxidativas, uma relacionada à oxidação do dímero e outra de sítio de subsuperfície. Nós provamos que estas duas novas possibilidades são cinética e energéticamente viáveis. Finalmente, apresentamos uma análise das modificações do perfil de corrente de tunelamento (STM - Scanning Tunneling Microscopy) provocadas por estes defeitos. Deste modo, n´os esperamos que este trabalho possa ser uma motivação para a comprovação de nossos resultados. / Silicon is the basic material for microeletronics industry, and for the recent developments in nano eletronics. In many applications, wet chemistry processing is important that is, with the presence of water molecules on the semiconductor surface. However, the reaction mechanism for the H2O molecule with Si, and the resulting structures, are still object of debate, from both theoretical and experimental points of view. Here, we present a detailed study of the dissociation of one water molecule on the surfaces Si (100) (2x1) (clean surface) and Si (100) (2x1): H ) monohydride, covering from the reaction evolution, to the characterization of the final surface. To do that, we use methodologies based on Density Functional Theory the reaction pathways for decomposition of the water molecule on the surface have been carried out with CI-NEB (climbing image nudging elastic band), and we used the Tersoff-Hamann model for surface characterization. Our results show that the water molecule dissociation on the clean surface is independent of the site of attack. The product of this reaction, H-Si-Si-OH unit, is stable and its subsequent decomposition occurs through thermal energy. We also find that the insertion of the oxygen atom a Si surface dimmer is energetically and kinetically favorable compared to absorption in the back-bond (subsurface) sites. Although hydrogenation cannot prevent oxidation of the surface, we can say that the passivation processes are efficient, since the monohydride surface is more resistant to attack by oxygen. In contrast with the clean surface, for this case, some oxidative process have dependency on the site of attack, while others are indifferent whether the interaction occurs in the valley or over the dimmer rows. Our results indicate that the oxidation route suggested by earlier experimental works is not favored. In this way, we propose two new oxidation routes, once related to chemisorption of the oxygen atom on the Si-Si dimmer bond, and another related to the absorption on the back bond, with simultaneous ejection of one H2 molecule. Analysis of energy barriers showed that these two new possibilities are both kinetically and energetically viable. We finally present analyses of the profiles of tunneling current, predicted by STM (Scanning Tunneling Microscopy) for oxygen incorporation in all studied structures. We hope to have contribuited to the understanding of the oxidation processes, and at the same time to motivate new experimental investigations
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29062010-100646 |
Date | 03 March 2010 |
Creators | Sousa, Regina Lélis de |
Contributors | Caldas, Marilia Junqueira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds