The aim of this master thesis is to create a 3D electroanatomical model of a heart atria, which would be able to perform atrial fibrillation. To control the model, the differential equations of the FitzHugh-Nagumo model were chosen. These equations describe the change of voltage on the cell membrane. The equations have established parameters. The modification of them leads to changes in the behavior of the model. The simulations were performed in the COMSOL Multiphysics environment. In the first step, the simulations were performed on 2D models. Simulations of healthy heart, atrial flutter and atrial fibrillation were created. The acquired knowledge served as a basis for the creation of a 3D model on which atrial fibrillation was simulated on the basis of ectopic activity and reentry mechanism. Convincing results were obtained in accordance with the used literature. The advantages of computational modeling are its availability, zero ethical burden and the ability to simulate even rarer arrhythmias. The disadvantage of the procedure is the need to compromise between accuracy and computational complexity of simulations.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442495 |
Date | January 2021 |
Creators | Ředina, Richard |
Contributors | Smíšek, Radovan, Ronzhina, Marina |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds