Fabrication of ordered anodic alumina nanopore arrays and anodization parameters including electrolyte, concentration, voltage, temperature and time have been investigated. Cobalt nanoparticles were electrodeposited at the bottom of the pores. Vertically aligned, open-tipped multi-walled carbon nanotube arrays of high density and uniformity were synthesized via a flame method on silicon substrates using a nanoporous template of anodized aluminum oxide. The diameter and length of the nanotubes are controlled by the geometry of the aluminum oxide template. It is the cobalt catalyst particles, not the porous aluminum templates, help the growth of carbon nanotubes through graphitization and bonding of carbon nanotubes to the silicon substrates. Fabrication of nano-structures has been demonstrated. Nano-trenches of 20 nm have been achieved using single-walled nanotube bundles as shadow masks, which were aligned across electrodes under high frequency AC voltage.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1244 |
Date | 01 January 2002 |
Creators | Hu, Wenchong |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0019 seconds