Return to search

Numerical investigation of gas explosion phenomena in confined and obstructed channels / Etudes des phénomènes d'accélération de flammes, transition à la détonation et d'inhibition de flammes

Les incidents d'explosions intervenant sur les sites industriels sont souvent accompagnés de dégâts matériels et humains importants. Les dégâts varient d’une explosion à une autre, suggérant l’existence de mécanismes capables d’aggraver le scénario d’explosion. Réduire les risques d'explosion nécessite une compréhension fine des différents mécanismes mis en jeu. Avec l’augmentation considérable de la puissance de calcul, la simulation numérique est devenu une approche incontournable pour l’étude et la compréhension de ces scénarios. Cette thèse se focalise sur les explosions de gaz initiées par un noyau de flamme subsonique. Lorsque la flamme se propage dans un environnement offrant un haut niveau de confinement et d’obstruction, ce qui est souvent le cas des sites industriels, une forte accélération de la flamme est généralement observée, accompagnée d’une augmentation de la pression. Dans certains cas, l’accélération de la flamme peut conduire à l’initiation d’une onde de détonation. Ce scénario coïncide avec une augmentation brutale de la surpression et donc une aggravation des dégâts observés. Pour reproduire des conditions de confinement et d’obstruction représentatives des sites industriels, l’université de Munich TUM a équipé une chambre confinée de 5.4m de long d’une série d’obstacles et analysé l’impact de ces obstructions sur la propagation de déflagrations hydrogène/air. Cette étude expérimentale a montré une forte influence de la richesse du mélange sur l’accélération de la flamme. Une transition à la détonation est notamment observée pour une certaine gamme de richesse. Cette configuration est donc idéale pour étudier les mécanismes d’accélération de flamme ainsi que les conditions qui peuvent mener à l’initiation de détonations. Une étude numérique des deux scénarios a été menée mêlant simulations directes (DNS) et simulations aux grandes échelles (LES):-Pour un mélange d’hydrogène/air pauvre, une forte accélération de la flamme est observée expérimentalement sans transition à la détonation. Les grandeurs caractéristiques de l’explosion ont été reproduites avec des simulations aux grandes échelles (LES). Plusieurs mécanismes d’accélération de flamme ont été identifiés et attribués au haut niveau de confinement et de congestion dans la chambre. Le couplage de ces mécanismes explique les grandes vitesses de propagation observées. -Pour un mélange stoechiométrique, une transition à la détonation est observée. Cette thèse s’est focalisée sur les instants précédant l’initiation de la détonation afin de caractériser les conditions nécessaires pouvant mener à cet événement soudain, en se basant sur une approche de simulation directe (DNS). Une attention particulière a été portée à l’influence du schéma cinétique sur ce scénario. Comme constaté dans bon nombre d’incidents industriels, les mesures préventives peuvent échouer. Le cas échéant, des procédures visant à contrôler l’impact des explosions doivent être utilisées pour éviter une catastrophe de grande ampleur. L’utilisation d’inhibiteurs chimiques est une technique qui a déjà fait ses preuves contre les feus. Elle consiste à injecter des poudres capables de réagir chimiquement avec la flamme et de réduire son taux de dégagement de chaleur. L’étude de l’interaction de ces particules solides avec la flamme correspond au deuxième volet de cette thèse. Un modèle simplifié de décomposition de ces particules solides (HetMIS) a été développé dans un contexte LES. Deux aspects ont été explorés : 1) l’interaction unidimensionnel flamme/particule a permis d’établir un critère, basé sur la taille des particules, caractérisant l’efficacité des poudres dans le processus d’inhibition; 2) l’effet de la distribution spatial des particules sur la propagation de la flamme est analysé dans le but d’apporter une explication à certains résultats expérimentaux révélant un effet opposé des inhibiteurs dans certaines conditions. / Mining, process and energy industries suffer from billions of dollars of worldwide losses every year due to Vapour Cloud Explosions (VCE). Moreover, explosion accidents are often tragic and lead to a high number of severe injuries and fatalities. The VCE scenario is complex and controlled by various mechanisms. The interplay among them is still not entirely understood. Understanding all these intricate processes is of vital importance and requires detailed experimental diagnostics. Coupling accurate numerical simulations to well documented experiments can allow an elaborate description of these phenomena. This thesis focuses on explosions occurring on configurations that are either semi-confined or confined. In such configurations, the explosion is generally initiated by a mild ignition and a subsonic flame front emerges from the ignition source. An important feature of self-propagating flames lies in their intrinsically unstable nature. When they propagate in an environment with high levels of confinement and congestion, which is the case in most industrial sites, a Flame Acceleration (FA) process is often observed that can give rise to very fast flames, known for their destructive potential. In some cases, the FA process can create the appropriate conditions for the initiation of detonations, which corresponds to a rapid escalation of the explosion hazard. To reproduce the confinement and congestion conditions that one can find in industrial sites, the university of Munich TUM equipped a confined chamber with a series of obstacles and analysed the influence of repeated obstructions on the propagation of hydrogen/air deflagrations. This experimental study showed a strong influence of the mixture composition on the acceleration process. A Deflagration to Detonation Transition (DDT) has also been observed for a certain range of equivalence ratio. This configuration is therefore ideal to study the mechanisms of flame acceleration as well as the intricate DDT process. A numerical study of both scenarios is performed in this thesis: -First for a lean premixed hydrogen/air mixture, a strong flame acceleration is observed experimentally without DDT. The characteristic features of the explosion are well reproduced numerically using a Large Eddy Simulation (LES) approach. The crucial importance of confinement and repeated flame-obstacle interactions in producing very fast deflagrations is highlighted. -DDT is observed experimentally for a stoichiometric hydrogen/air mixture. This thesis focuses on the instants surrounding the DDT event, using Direct Numerical Simulations (DNS). Particular attention is drawn to the impact of the chemistry modelling on the detonation scenario. The failure of preventive measures is often observed in many explosion accidents. To avoid a rapid escalation of the explosion scenario, mitigative procedures must be triggered when a gas leak or an ignition is detected. Metal salts (like potassium bicarbonate and sodium bicarbonate) have received considerable attention recently because well-controlled experiments showed their high efficiency in inhibiting fires. The last part of the thesis focused on the mechanism of flame inhibition by sodium bicarbonate particles. First, criteria based on the particle sizes are established to characterize the inhibition efficiency of the particles. Second, two dimensional numerical simulations of a planar flame propagating in a stratified layer of very fine sodium bicarbonate particles showed that under certain conditions these powders can act as combustion enhancers. These results echo a number of experimental observations on the possible counter-effects of the inhibitors.

Identiferoai:union.ndltd.org:theses.fr/2018INPT0031
Date23 April 2018
CreatorsDounia, Omar
ContributorsToulouse, INPT, Poinsot, Thierry, Vermorel, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds