Return to search

Flavin-dependent Enzymes in Natural Product Biosynthesis

Natural products are biologically active metabolites produced by fungi, bacteria, and plants that have an extended application in pharmaceutical and chemical industries. Because of their chemical versatility, flavoenzymes are commonly involved in natural product biosynthetic pathways. This has given rise to the identification of flavoenzymes that are promising candidates for biomedical and biotechnical applications. This dissertation discusses the characterization of three flavoenzymes involved in natural product biosynthesis. The class B flavin-dependent monooxygenases S-monoooxygenase from Allium sativum (AsFMO) and N-hydroxylating monooxygenase from Streptomyces sp. XY332 (FzmM) were studied. Both enzymes perform heteroatom oxidation as part of allicin or fosfazinomycin biosynthesis respectively. AsFMO was predicted to oxidize S-allyl-L-cysteine (SAC) to alliin in allicin biosynthesis. Surprisingly, AsFMO exhibited negligible activity with SAC, and instead was highly active with allyl mercaptan and NADPH. This contradicted the initial proposal and suggested that AsFMO is involved in an alternative path producing allicin directly from allyl mercaptan. FzmM was identified to perform multiple N-oxidations which lead to the formation of a nitro group. FzmM performed a highly coupled and specific reaction with L-aspartate and NADPH to produce nitrosuccinate. Both AsFMO and FzmM followed a kinetic mechanism representative of class B flavin-dependent monooxygenases with a rapid pro-R stereospecific reduction and the formation of a C(4a)-hydroperoxyflavin intermediate during oxidation. In addition, the AsFMO structure was obtained and consisted of two domains for FAD and NADPH binding signature of class B monooxygenases. The biochemical and structural study of the Acinetobacter baumannii siderophore interacting protein (BauF) was also accomplished. This enzyme is essential in acinetobactin mediated iron assimilation and is important for virulence. The characterization of the binding and reduction of acinetobactin-ferric iron complex revealed that BauF is specific for this substrate and does not utilize NAD(P)H as an electron donor. The unique activity and structure of BauF can aid future drug design. / Doctor of Philosophy / Plants, fungi, and bacteria synthesize and excrete unique chemicals called secondary metabolites or natural products. These compounds are used for many applications including dyes, flavorings, fragrances, and medicine. To make natural products, organisms use enzymes to perform complex reactions. Studying the enzymes that are involved in natural product pathways is important for understanding how secondary metabolites are made. Additionally, these enzymes can be engineered to perform reactions relevant to biotechnical applications. Our lab specializes in the study of flavoenzymes which use flavin chemistry for catalysis. Flavin is a yellow coenzyme that contributes to wide array of reactions by performing 1 or 2 electron transfers. This dissertation discussed the characterization of three flavoenzymes. The first enzyme is a S- monooxygenase from Allium sativum (garlic) called AsFMO. Reported here is the kinetic and structural characterization of AsFMO. We demonstrated that AsFMO was cabable of performing an unexpected reaction with allyl mercaptan likely converting it into allicin, the main flavor ingredient of garlic. Secondly, we reported the kinetic characterization of a nitro- forming enzyme termed FzmM. Nitro- formation is a valuable process as nitro- compounds are used in industrial organic synthesis. It was shown that FzmM performs nitro- formation with high efficiency and is specific for the substrate L-aspartate. Lastly, this work described the characterization of the the siderophore-interacting protein from Acinetobacter baumannii, BauF, which was predicted to be involved in iron acqusition. A. baumannii is a serious human pathogen with multidrug resistance, and inhibiting iron acquisition has been shown to prevent its survival. The characterization of the enzymes involved in this pathway is essential for developing new treatments for A. baumannii infection. We report the structure and function of BauF confirming its role in A. baumannii iron uptake and providing information that will aid in future drug design.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111970
Date31 March 2021
CreatorsValentino, Hannah Rachel
ContributorsBiochemistry, Sobrado, Pablo, Gillaspy, Glenda E., Kennelly, Peter J., Brown, Anne M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds