Return to search

Parametric analysis on flexural performance of reactive powder concrete frame beams reinforced with steel-FRP composite bars

Yes / To study the flexural behavior of Steel-FRP (Fiber-Reinforced Polymer) Composite Bars (SFCBs) reinforced Reactive Powder Concrete (RPC) frame beams, the flexural behavior of six frame beams with different types of concrete and reinforcement was simulated and analyzed using the finite element software ABAQUS. The strain behavior of concrete and reinforcement was simulated using real strain models, and the simulation results matched well with the experimental results. Based on the validated model, the effect of mechanical properties of concrete and SFCB, reinforcement ratio, and the dimensions of frame beam on the flexural behavior of frame beams was parametrically analyzed. The results showed that, compared with the steel-reinforced ordinary concrete (OC) frame beam, the ultimate deflection of SFCB-OC frame beam increased by 5%. Compared with the SFCB-OC frame beam, the bearing capacity and ultimate deflection of the SFCB-RPC frame beam increased by 16% and 22%, respectively. Improving the steel content of SFCB reduced the ultimate load and deformation of SFCB-RPC frame beam. The yield strength of SFCB core steel had a significant influence on the yield load of frame beam, but a small influence on the ultimate load and deformation. Enhancing the elastic modulus of SFCB out-wrapped FRP reduced the ultimate deformation of the frame beam. Improving the reinforcement ratio of SFCB increased the bearing capacity and reduced the deformation. When reinforced concrete frame beams had similar bearing capacity, the cross-sectional dimensions of steel-RPC frame beam, FRP-RPC frame beam, and SFCB-RPC frame beam are 90.1%, 61.5%, and 72.7%, respectively, of those of their corresponding respective reinforced OC frame beams. All reinforced RPC frame beams exhibited high bearing capacity, good deformation, ductility, and energy dissipation performance. This research can provide a reference for the design of SFCB-RPC frame beams. / High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), the Science and Technology Project of Gansu Construction System (JK2021-19), the Science and Technology Project of Jiangsu Construction System (2018ZD047, 2021ZD06, 2023ZD104, 2023ZD105), the Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University (YZ2022194), the Yangzhou Construction System Science and Technology Project (202309, 202312), the Research Project of Jiangsu Civil Engineering and Architecture Society (the Second Half of 2022). / The full-text of this article will be released for public view at the end of the publisher embargo on 27 Jan 2025.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19803
Date24 January 2024
CreatorsGe, W., Zhang, F., Sushant, S., Yao, S., Ashour, Ashraf, Luo, L., Jiang, H., Zhang, Z.
PublisherElsevier
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted manuscript
Rights© 2024 Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license., CC-BY-NC-ND

Page generated in 0.0093 seconds