Return to search

The estimated parameter flood forecasting model

Design flood estimates have traditionally been based on records of past events. However, there is a need for a method of estimating peak flows without these records. The Estimated Parameter Flood Forecasting Model (EPFFM) has been developed to provide such a method for small water resource projects based on a 200 year or less design flood. This "user friendly" computer model calculates the expected peak flow and its standard deviation from low, probable, and high estimates of thirteen user supplied parameters. These parameters describe physical characteristics of the drainage basin, infiltration rates, and rainstorm characteristics. The standard deviation provides a measure of reliability and is used to produce an 80% confidence interval on peak flows.
The thesis briefly reviews existing flow estimation techniques and then describes the development of EPFFM. This includes descriptions of the Chicago method of rainfall hyetograph synthesis, Horton's infiltration equation, inflow by time-area method, Muskingum routing equation, and an approximate method of estimating the variance of multivariate equations since these are all used by EPFFM to model the physical and mathematical processes involved. Two examples are included to demonstrate EPFFM's ability to estimate a confidence interval, and compare these with recorded peak flows. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/25148
Date January 1985
CreatorsZachary, A. Glen
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds