The process of designing a floorplan is highly iterative and requires extensive human labor. Currently, there are a number of computer programs that aid humans in floorplan design. These programs, however, are limited in their inability to fully automate the creative process. Such automation would allow a professional to quickly generate many possible floorplan solutions, greatly expediting the process. However, automating this creative process is very difficult because of the many implicit and explicit rules a model must learn in order create viable floorplans. In this paper, we propose a method of floorplan generation using two machine learning models: a sequential model that generates rooms within the floorplan, and a graph-based model that finds adjacencies between generated rooms. Each of these models can be altered such that they are each capable of producing a floorplan independently; however, we find that the combination of these models outperforms each of its pieces, as well as a statistic-based approach.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:cs_etds-1095 |
Date | 01 January 2019 |
Creators | Goodman, Genghis |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Computer Science |
Page generated in 0.0018 seconds