Return to search

Modeling Flotation from First Principles Using the Hydrophobic Force as a Kinetic Parameter

Flotation is regarded as the best available separation method for the recovery of valuable minerals such as chalcopyrite (CuFeS2), sphalerite (ZnS), etc., from mined ores. Practically all metals humans use today are produced by flotation. The process relies on controlling the stability of the thin liquid films (TLFs) of water formed between minerals and air bubbles (wetting film), air bubbles (foam film), and mineral particles (colloid films). In flotation, a desired mineral is rendered hydrophobic by surfactant coating as a means to destabilize the TLFs, so that they can be attached to the hydrophobic air bubbles. A TLF ruptures when the disjoining pressure (or surface forces per unit area) of the film becomes negative, i.e., Π < 0. Thermodynamically, a wetting film can rupture when the contact angle (θ) of a mineral surface is larger than zero. It would, therefore, be reasonable to consider the roles of the surface forces to better understand the fundamental mechanisms involved in flotation. The surface forces considered in the present work included the electric double layer (EDL), van der Waals (vdW), and attractive hydrophobic (HP) forces.
A flotation model has been developed by using the hydrophobic force as a kinetic parameter, which made it possible to track the fates of mineral particles of different of size, surface liberation, and contact angle to predict both recovery and grades for the first time. The model has been validated against the plant survey data obtained from an operating copper flotation plant. The simulation results obtained using the first principles model have been utilized to address the limitations of current flotation practices. One such limitation is the presence of slow-floating target minerals present in the cleaner-scavenger tails (CST) that are routinely recycled back to the rougher flotation bank as circulating loads (CLs) to allow longer retention times for the slow-floating particles for additional recovery. The simulation results show also that opening a flotation circuit by treating the CST streams separately in an advanced circuit can substantially improve the plant performance.
One of the major limitations of flotation is that the coarse particles in a feed stream are difficult to recover due to the low hydrophobicity associated with poor surface liberation. A new flotation model developed in the present work suggests various ways to address the problem. One is to increase the hydrophobicity of the composite (poorly liberated) particles using the Super Collectors that can increase the contact angles to 150 -170o. Simulation results obtained using the model developed in the present work show significant financial benefits of using Super Collectors.
Flotation is controlled by surface forces as noted above. As particle size becomes larger than 150 µm, however, the gravitational force comes into the picture and can override the surface forces. A new flotation cell has been developed to mitigate the effects of the extraneous force by decreasing the effective specific gravity (SG) by attaching air bubbles to facilitate levitation and by creating a pulsation to allow particles to move according to SGs independent of particle size, which should help increase the upper particle size limit of flotation.
Surface forces in foam and oil-in-water emulsion films have been measured at different temperatures to determine the changes in thermodynamic properties of the thin liquid films (TLFs) of water confined between two bubbles and two oil drops. The results show that the films are destabilized by the attractive hydrophobic forces created during the course of building H-bonded structures in confined spaces, which entails decreases in enthalpy (H < 0) and entropy (TS < 0), the second term representing the thermodynamic cost of building the structures. / Doctor of Philosophy / Flotation is a kinetic process designed to separate valuable minerals from mined ores. This process depends on several hydrodynamic and surface chemistry parameters making it hard to model. A U.S. patent was awarded to Sulman and Picard in 1905 for using air bubbles to selectively collect hydrophobic particles from the aqueous phase, leaving hydrophilic particles behind. Since then, the separation process known as flotation has been used to produce practically all metals humans use. Many investigators developed flotation models using hydrodynamic parameters, e.g., particle size, bubble size, energy dissipation rate, etc., but without a reference to particle hydrophobicity. Therefore, the models were successful in predicting recoveries but not product grades. Derjaguin and Dukhin (1961) were the first to model flotation using surface forces but without due consideration of the role of hydrophobic force in flotation. Therefore, it also failed to predict product grades.
In the current work, a new flotation model has been developed using the hydrophobic force as a kinetic parameter. This approach made it possible to predict both recoveries and grades for the first time. The model has been reduced to a simple form mimicking the Arrhenius equation so that it can be used to delineate the different conditions required for optimizing coarse and fine particle flotation. The model has been derived by considering the surface forces in the thin liquid films (TLFs) of water confined between bubbles, and bubbles and particles. It has been found that the hydrophobic force plays a decisive role in destabilizing a wetting film and inducing bubble-particle attachment. The surface forces measured in the present work show that the hydrophobic interactions in macroscopic scales are controlled by enthalpy rather than entropy, which is contrary to the nanoscale hydrophobic interactions. The model has been validated against a full-scale plant operation and demonstrated predictive capabilities. The simulation results have been analyzed to determine the limitations of the current flotation practices. It was found that coarse particle flotation is difficult either due to the presence of composite particles reducing the particle contact angle or due to their poor hydrodynamic properties. Utilizing the insights from the model, various methods of alleviating these limitations have been developed and presented in the current work.

References
Derjaguin, B.V., Dukhin, S.S., 1961. Theory of flotation of small and medium-size particles. Inst. Min. Metall. 241–267.
Sulman, H.L., and Kirkpatrick-Picard (1905). U.S. Patent No. 793,808.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/118423
Date15 March 2024
CreatorsGupta, Mohit
ContributorsChemical Engineering, Yoon, Roe H., Ducker, William A., Davis, Richey M., Huang, Kaiwu, Noble, Christopher Aaron
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0031 seconds