Myo-inositol is ubiquitous in nature and is found at the structural core of a diverse range of biologically important derivatives, including phosphatidylinositols, inositol phosphates and mycothiol. The synthesis of myo-inositol derivatives is notoriously difficult due to the need to control both regio- and enantioselectivity. As a result, synthetic routes to derivatives of this type are often lengthy and low yielding. The first biosynthetic step in the production of all myo-inositol metabolites is the isomerisation of D-glucose 6- phosphate to L-myo-inositol 1-phosphate as mediated by L-myo-inositol 1-phosphate synthase (INO1). For the protozoan parasite Trypanosoma brucei, INO1 is essential for survival and its version of the enzyme (TbINO1) has a high turnover. This makes TbINO1 an attractive candidate for the biocatalytic production of L-myo-inositol 1- phosphate, and a potential starting point for drastically shortened syntheses of important myo-inositol derivatives. The production of L-myo-inositol 1-phosphate by TbINO1 has been optimised to achieve complete conversion in reaction conditions that facilitate product isolation. Due to problems with an in-batch process, the TbINO1 enzyme was immobilised and the process was transferred to a flow system. This has allowed for production of significant quantities of L-myo-inositol 1-phosphate with a high level of purity. L-myo-inositol 1- phosphate obtained from the flow system has been used to prepare mycothiol glycosylation acceptor, 1,2,4,5,6-penta-O-acetyl-D-myo-inositol, in a concise synthesis with a greatly improved yield over the literature.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:750188 |
Date | January 2016 |
Creators | Sayer, Lloyd |
Contributors | Smith, Terry K. ; Florence, Gordon John |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/15658 |
Page generated in 0.0019 seconds