Return to search

Compositional change of meltwater infiltrating frozen ground

Meltwater reaching the base of the snowpack may either infiltrate the underlying stratum, run off, or refreeze, forming a basal ice layer. Frozen ground underneath a melting snowpack constrains infiltration promoting runoff and refreezing. Compositional changes in chemistry take place for each of these flowpaths as a result of phase change, contact between meltwater and soil, and mixing between meltwater and soil water. Meltwater ion concentrations and infiltration rate into frozen soils both decline rapidly as snowmelt progresses. Their temporal association is highly non-linear and the covariance must be compensated for in order to use time-averaged values to calculate chemical infiltration over a melt event. This temporal covariance is termed �enhanced infiltration� and represents the additional ion load that infiltrates due to the timing of high meltwater ion concentration and infiltration rate. Both theoretical and experimental assessments of the impact of enhanced infiltration showed that it causes a greater ion load to infiltrate leading to relative dilute runoff water. Sensitivity analysis showed that the magnitude of enhanced infiltration is governed by initial snow water equivalent, average melt rate, and meltwater ion concentration factor. Based on alterations in water chemistry due to various effects, including enhanced infiltration, three major flowpaths could be distinguished: overland flow, organic interflow, and mineral interflow. Laboratory experiments were carried out in a temperature-controlled environment to identify compositional changes in water from these flowpaths. Samples of meltwater, runoff, and interflow were filtered and analyzed for major anions and cations. Chemical signatures for each flowpath were determined by normalizing runoff and interflow concentrations using meltwater concentrations. Results showed that changes in ion concentrations were most significant for H<sup>+</sup>, NO<sub>3</sub><sup>�</sup>, NH<sub>4</sub><sup>+</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup>. Repeated flushes of meltwater through each interflowpath caused a washout of ions. In the field, samples of soil water and ponding water were collected daily from a Rocky Mountain hillslope during snowmelt. Their normalized chemical compositions were compared to the laboratory-identified signatures to evaluate the flowpath. The majority of the flowpaths sampled had chemical signatures, which indicated mineral interflow, only 10% showed unmixed organic interflow.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-03312009-101916
Date06 April 2009
CreatorsLilbæk, Gro
ContributorsPeters, Norman (Jake), Pennock, Dan J., Maule, Charles P., Marsh, Philip, de Boer, Dirk H., Pomeroy, John W.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-03312009-101916/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0025 seconds