Predicting fatigue failure is a critical design element for many engineering components and structures subject to complex service conditions. In high-temperature and corrosive environments, many materials exhibit rate dependent phenomena that can significantly alter safe service life predictions. Existing cycle processing techniques such as Peak Counting, Simple Range, and the Rain Flow method are able to resolve complex service histories into sets of simple cycles, but these methods are unable to handle time-related parameters such as engage rate and cycle sequence. To address this, a cycle processor was written in FORTRAN 95 later termed the Multi-Algorithm Cycle Counter (MACC). This code was utilized as a platform to develop, test, and study various methods of extracting and interpreting rate parameters extracted from cycles defined by existing counting algorithms.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2088 |
Date | 01 January 2010 |
Creators | O'Kelley, Ryan |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Source | HIM 1990-2015 |
Page generated in 0.002 seconds