Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Currently the three main algae strains that are manufactured commercially are Chlorella, Spirulina and Dunaliela salina, which are produced for biomass and bioproducts. Photobioreactors (PBR) allow the exploitation of over 50 000 known microalgae species with over 15 000 novel compounds having been chemically identified to date. Many of these algae could be sources of high-value products which are produced using a method that delivers them from renewable resources.
Designing an optimal photobioreactor is a complex process because a large array of variables is included in the design, with several of the variables interacting with each other directly. The interactions of most of these variables have not been established. The initial information that is available is inadequate because most photobioreactors have been tested on a laboratory scale and the information given does not include the manufacturing materials, the size of tubing used and other design variables.
Before designing a photobioreactor, it is important to understand the best conditions for the production of algae because these have a direct influence on the requirements. In order to produce algae biomass under the specific conditions, one has to investigate current photobioreactors that have been designed in order to establish whether they are capable of optimum production under the production conditions; determine possible factors that could influence the production negatively and how they could be prevented; and undertake a cost analysis to determine whether the production of algae is an economically viable process using the specific reactor. All of these criteria have to be met for a photobioreactor to be viable in the production of algae biomass.
Currently a Bubble column reactor is considered to be the best design for a photobioreactor and also the most scalable. Due to the limited information available, testing was conducted to determine the effect of: 1) different manufacturing materials, 2) the gas dispersion unit, 3) the diameters of the tubing and 4) the density. Bubble column reactors were used to test the effects of the four variables and were considered to be the most important aspects in the design. For testing these variables and their interaction, Chlorella Vulgaris was used because it is one of the most popular algae species used for production currently. As temperature and the availability of light play a large role in the production of algae, all testing was done in a laboratory environment to ensure small temperature changes and the constant availability of light.
The reactors that were tested were made of PVC couplings, with the clear tubing used being made of either PVC or acrylic tubing. Enriched air was supplied at a 5% volume per volume ratio of CO2, with a flow rate of 0.02 volume per volume per minute (vvm) for the 50 mm diameter reactors and 0.36 vvm for the 90 and 110 mm diameter reactors. Two gas dispersion units were used to determine whether they would have any effect on the production. The gas dispersion units create small bubbles to ensure a high surface area to volume ratio and thereby they allow for maximum CO2 and O2 mass transfer.
A growth rate of 0.14 gram per litre per day was found to yield the best production of all the reactors and configurations that were tested. The 50 mm diameter reactors showed the best growth followed by the 110 mm diameter reactors. The 90 mm diameter reactors all had a negative growth rate which appeared to be due to an insufficient gas flow rate. The 50 mm reactors had the best growth rate of 0.14 and 0.10 grams per litre per day for the acrylic tubing, while 0.08 grams per litre per day was achieved with PVC tubing. The 110 mm reactors had a highest growth rate of 0.05 grams per litre per day with PVC tubing.
It was found that the 50 mm and 90 mm reactors showed a better performance with acrylic tubing while the 110 mm reactors showed a better performance with PVC tubing. The gas dispersion unit is affected by the gas flow rate, the density, the diameter of the tubing and the material that is used. The gas dispersion units’ effect is dependent on the diameter of the reactor seeing that the 50 mm reactor shows better performance with the small unit, while the 110 mm reactor shows better performance with the large unit, due to the gas flow rate that is required in the reactors. Because the gas flow rate and gas dispersion unit directly affect the agitation, the optimal density is affected directly due to the availability of light and therefore the tubing material. The gas dispersion units should fit properly into the reactor and be capable of handling the gas flow rate that is required. The diameter of the tubing does not show any effect but could have an effect under different testing conditions and could not be conclusively eliminated. The density of algae does have an effect, although most reactors showed a better production rate at a higher culture density.
The scale up of the bubble column reactor creates a dead zone when a module is constructed. The scale up of a bubble column reactor could range from increasing the vertical tubing length, increasing the diameter of the tubing to adding vertical tubing to a module. The dead zone is formed at the bottom of the reactor where the module interconnects the vertical growth tubes, because these fittings are not constructed from a clear material, due to cost of such a construction. The dead zone that is created causes a large portion of algae to form a sediment, which directly affects the production of the system because it is in a dark zone of the reactor. Improved results would be obtained if the algae were kept at a homogeneous density that would ensure maximum expose to light.
The ratio of gas flow rate to reactor volume and diameter of the tubing was found to be crucial. It is suspected that the 90 mm tubing reactor had a negative growth rate as this ratio was not correct. The 50 mm reactors had to be run at a much lower reactor volume per volume gas flow rate which could consist of air, carbon dioxide enriched air or other gases as required. The inclusion of the tubing diameter in the ratio is of vital importance and should be studied further.
A cost analysis shows that the bubble column reactors under the tested conditions are not financially viable. A large component of the cost is carbon dioxide and medium, which is a composition of nutrients. This could be removed if a free source were obtained, which would make the system financially viable. These sources could include waste water and flue gas from industrial processes.
It is recommended that a gas dispersion tube be positioned at the bottom of the reactor to ensure that no sedimentation occurs and that there is a homogeneous culture, and to maximise the production capabilities of a bubble column reactor. It is also recommended that the gas flow rate inside the reactor be studied to obtain a ratio where the volume of the reactor, the height of the reactor and the diameter of the tubing are included to obtain a sufficient rate of flow. / AFRIKAANSE OPSOMMING: Tans is daar drie belangrike alg stamme wat kommersieel geproduseer word, Chlorella, Spirulina en Dunaliela salina. Fotobioreaktors het meegebring dat meer as 50 000 bekende alg spesies met meer as 15 000 komponente tot op datum chemies geïdentifiseer is. Baie van hierdie alge kan hoë waarde produkte wees, wat met behulp van hernubare metodes geproduseer kan word.
Die ontwerp van 'n optimale fotobioreaktor is 'n komplekse proses aangesien 'n groot verskeidenheid veranderlikes ingesluit moet word wat ‘n invloed op mekaar kan hê. Die interaksie van meeste van hierdie veranderlikes is nog nie vasgestel nie. Die inligting oor hierdie onderwerp is beperk aangesien die meeste fotobioreaktors in 'n laboratorium getoets is en dus nie die vervaardigingsmateriale, die grootte van buise en ander ontwerp veranderlikes insluit nie.
Voordat 'n fotobioreaktor ontwerp kan word, moet die ideale alg produksie toestande verstaan word, aangesien dit 'n direkte impak op die produksie vereistes kan hê. Om alg biomassa onder spesifieke omstandighede te produseer, moet die bestaande fotobioreaktor ontwerpe ondersoek word. Daar moet vasgestel word of die bepaalde ontwerp oor die kapasiteit beskik om optimale produksie te lewer; identifisering van faktore wat produksie negatief kan beïnvloed en hoe dit voorkom kan word; en 'n koste ontleding moet gedoen word om te bereken of die produksie van alge met die geidentifiseerde ontwerp 'n ekonomies lewensvatbare proses is. Daar moet aan al die vereistes voldoen word om te bepaal of 'n fotobioreaktor lewensvatbaar is vir die produksie van alg biomassa.
'n Borrel-kolom reaktor ontwerp word tans as die beste ontwerp vir 'n fotobioreaktor geag, asook die mees aanpasbare ontwerp. As gevolg van die beperkte inligting wat beskikbaar is, is navorsing gedoen om die invloed van verskillende faktore te bepaal, naamlik: vervaardigingsmateriaal, gasverspreidingseenheid, buisdeursnee en digtheid. Borrel-kolom reaktors is gebruik om die vier belangrikste veranderlikes in die ontwerp te toets. Om die veranderlikes en hul interaksie te toets, is Chlorella vulgaris gebruik, aangesien dit een van die gewildste alg spesies is vir die produksie van biomassa. As gevolg van die belangrike rol wat temperatuur en lig beskikbaarheid in die produksie van alge speel, is al die toetse in 'n laboratorium-omgewing gedoen om temperatuur wisseling te beperk en konstante lig beskikbaarheid te verseker.
Die reaktors wat getoets is, is vervaardig uit PVC koppelstukke, met die deurskynende buise wat uit PVC of akriel vervaardig is. Verrykte lug is verskaf op 'n 5% volume per volume verhouding CO2, met 'n vloei tempo van 0,02 volume per volume per minuut (vvm) vir die 50 mm deursnee reaktors en 0,36 vvm vir die 90 mm en 110 mm reaktors. Twee gasverspreidingseenhede is gebruik om hulle invloed op die produksie te bepaal. Die gasverspreidingseenhede skep kleiner borrels, om 'n hoë oppervlak area tot volume verhouding te skep en daardeur 'n maksimum CO2 en O2 massa-oordrag te verseker.
'n Groeikoers van 0,14 gram per liter per dag is gevind as die beste produksie van al die reaktors en konfigurasies wat getoets is. Die 50 mm deursnee reaktors het die beste groei getoon, gevolg deur die 110 mm deursnee reaktors. Die 90 mm deursnee reaktors het 'n negatiewe groeikoers getoon, wat moontlik toegeskryf kan word aan onvoldoende gas vloei tempo. Die 50 mm reaktors het die beste groeikoers van 0,14 en 0,10 gram per liter per dag vir die akriel buise getoon, terwyl ‘n 0,08 gram per liter per dag behaal is met 'n PVC buis. Die 110 mm reaktors het die hoogste groeikoers aangedui van 0,05 gram per liter per dag met 'n PVC buis.
Daar is bevind dat die 50 mm en 90mm reaktors 'n beter prestasie met akriel buise gehad het, terwyl die 110 mm reaktors 'n beter prestasie met 'n PVC buis gehad het. Die gasverspreidingseenheid word beinvloed deur die gas vloei tempo, digtheid, buisdeursnee en die vervaardigingsmateriaal wat gebruik word. Die gasverspreidingseenhede word verder beinvloed deur die reaktor se buisdeursnee aangesien die 50 mm reaktor ‘n beter prestasie getoon het met die kleiner gas eenheid, terwyl die 110 mm reaktor ‘n beter prestasie getoon het met die groter gas eenheid, as gevolg van die gas vloei tempo wat vereis is. Die gas vloei tempo en gasverspreidingseenheid het ‘n direkte invloed op die groei van die kultuur, dus is die optimale digtheid afhanklik van die lig beskikbaarheid en dus die vervaardigingsmateriaal van die buise. Die gasverspreidingseenhede moet stewig in die reaktor pas en in staat wees om die gas vloei tempo wat vereis word te kan hanteer. Hoewel die deursnee van die buise nie 'n invloed getoon nie, kan dit 'n invloed onder verskillende toets omstandighede toon en kon nie finaal uitgeskakel word. Die digtheid van die alge het wel 'n effek, hoewel die meeste reaktors ‘n beter produksie tempo op 'n hoër kultuur digtheid toon.
Die groter skaal borrel-kolom reaktor ontwikkel 'n dooie sone indien ‘n module saamgestel word. Die groter skaal borrel-kolom reaktor kan insluit: die verhoging van die vertikale buis lengte, 'n toename in deursnee van die buise en toevoeging van vertikale buise in die module. Die dooie sone het gevorm aan die onderkant van die reaktor waar die module se vertikale groei buise met mekaar verbind is. Hierdie area is uit nie-deurskynende materiaal vervaardig as gevolg van die konstruksie koste. Die dooie sone het veroorsaak dat groot hoeveelhede van die alge ‘n sediment gevorm het en ‘n direkte invloed op die produksie van die stelsel gehad het aangesien dit 'n donker sone in die reaktor gevorm het. Beter resultate kan verwag word indien die alge op 'n homogeniese digtheid gehou kan word om maksimum lig blootstelling te verseker.
Daar is bevind dat die verhouding van gas vloei tempo tot reaktor volume en buisdeursnee deurslaggewend is. Die negatiewe groeikoers in die 90 mm reaktor word toegeskryf daaraan dat hierdie verhouding nie korrek was nie. Die 50 mm reaktors het op 'n laer reaktor volume per volume gas vloei tempo gefunksioneer wat kan bestaan uit die lug, verrykte lug of ander gasse soos benodig. Dit dui daarop dat die insluiting van die buis deursnee in hierdie verhouding van kardinale belang is en verder bestudeer moet word.
'n Koste ontleding toon dat die borrel-kolom reaktors onder hierdie getoets omstandighede nie finansieel lewensvatbaar is nie. 'n Groot deel van die koste is die medium, wat 'n samestelling van voedingstowwe is, en koolstofdioksied koste. Om finansieel lewensvatbaar te raak, moet hierdie kostes deur 'n gratis bron vervang word. Die bronne kan bestaan uit afval water en oortolige CO2 uit industrie.
Daar word aanbeveel dat 'n gasverspreidingsbuisie aan die onderkant van die reaktor geplaas word. Dit sal verseker dat geen sediment vorm nie en 'n homogeniese kultuur gehandhaaf kan word om maksimum produksie in 'n borrel-kolom reaktor te handhaaf. Verder word aanbeveel dat die gas vloei tempo binne die reaktor verder bestudeer word om 'n verhouding tussen die volume van die reaktor, die hoogte van die reaktor en die deursnee van die buise te bepaal deur sodoende 'n voldoende tempo van vloei te verkry.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/96886 |
Date | 03 1900 |
Creators | Hagendijk, Adrianus Jan |
Contributors | Els, Raymond, Stellenbosch University. Faculty of Engineering. Dept of Process Engineering. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | xxii, 170 pages : illustrations |
Rights | Stellenbosch University |
Page generated in 0.0027 seconds