Discrete (mm- to m-scale) mylonitic shear zones in the northeastern Harquahala metamorphic core complex, Arizona, show evidence of fluid-mineral interactions catalyzing deformation and metamorphism. Many contain a deformed central epidote vein with adjacent bleached haloes and flanking paired shear zones that indicate significant fluid-rock interaction during deformation. An integration of structural and geochemical methods was employed to understand timing, metamorphic conditions, and physiochemical processes responsible for producing the discrete shear zones. Field and microstructural evidence suggest the zones initiated on antecedent fractures. Electron backscatter diffraction (EBSD) analyses show a significant coaxial contribution to the shear, and quartz deformation predominately by prism <a> slip, along with some rhomb <a> slip, suggesting amphibolite-facies conditions during shearing. Fourier Transform Infrared spectroscopy analyses of quartz reveal higher water contents within shear zones than within country rocks, indicating fluid infiltration synchronous with shearing. Stable isotope analyses of quartz and feldspar from mylonites are consistent with an igneous or metamorphic fluid origin. Microstructural observations suggest that the zone morphology with epidote veins, bleached haloes, and flanking discrete paired shear zones was developed predominantly from reaction softening mechanisms. The increase in deformation from bleached rock to flanking shear zones is marked by progressive modal increases in biotite and myrmekite, and modal decreases in K-feldspar, and locally epidote and titanite. Myrmekitic textures recrystallized readily and resulted in progressively greater grain size reduction of feldspar, which aided in the progressive alignment and linkage of the biotite grains, which together concentrated the deformation in bands. Volume reduction resulting from some of the metamorphic reactions may have led to a positive feedback cycle among fluid infiltration, metamorphism and deformation. U-Pb isotope analyses of syn-metamorphic titanite yield an age of ~70 Ma, suggesting the shear zones formed during cooling of the Late Cretaceous (75.5±1.3 Ma) Brown’s Canyon pluton, consistent with their top-to-the-southwest sense of shear, rather than during top-to-the-northeast directed Miocene metamorphic core complex exhumation. Petrography, EBSD analyses, and U-Pb dating of titanite from other (non-discrete) mylonites in the area imply most formed synchronously with the discrete shear zone mylonites. Only rare, scattered mylonites show features consistent with metamorphic core complex exhumation. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25744 |
Date | 04 September 2014 |
Creators | Pollard, Brittney Maryah |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0016 seconds