Return to search

PHASE CHANGE MATERIALS FOR DIE AND COMPONENT LEVEL THERMAL MANAGEMENT

<p dir="ltr">With increasing power densities in electronic devices, effective thermal management has become an indispensable aspect of electronic systems design. Although phase change materials (PCMs) have been studied as a potential solution, their integration into microelectronic and high-power devices presents a significant challenge due to low thermal conductivity and lack of effective thermal pathways from the heat source to the heat sink. While much work has focused on integrating thermal storage into heat sinks, this dissertation instead investigates integrating PCMs between the heat source and the heat sink in different configurations. By placing the energy storage closer to the heat source, the thermal resistance is reduced, which improves the overall thermal performance of the device. Specifically, this work explores the efficacy of two approaches: (1) direct embedding of a PCM within the die for mobile electronics applications and (2) integration of an auxiliary composite PCM/copper thermal energy storage (TES) component in combination with active liquid cooling for high-power power electronics modules.</p><p><br></p><p dir="ltr">The first study explores die-level thermal management for microelectronics using PCMs. Silicon chips with PCM embedded within the die are modeled using ParaPower, a fast-analysis tool, and a genetic algorithm is used to efficiently optimize the distribution of high-conductivity silicon pathways and high thermal capacitance PCM zones. A thermal test vehicle (TTV) of a realistic microelectronics form factor with an embedded PCM layer is first designed, and a process is developed to fabricate such a TTV. This study is the first to successfully fabricate a TTV with fully encapsulated PCM and validate its thermal response across various operational scenarios. For temperature cycling tests (where the TTV temperature fluctuates between predetermined hot and cold setpoints), the embedded-PCM TTVs extend the operational time by up to 2.8x compared to a baseline all-silicon TTV. For duty cycling tests (with a fixed duration of the periodic heating pulses and off times), the embedded-PCM TTVs suppress the hotspot temperature rise by up to 14% and stabilize quasi-steady state temperature fluctuations by up to 65% through repeated PCM melting and solidification cycles. Thermal performance enhancements are observed even for high heat fluxes of ~65W/cm<sup>2</sup> . Specifically, a TTV with an embedded square-shaped PCM reservoir reduces temperature instability by an average of 40% across a range of cycle durations.</p><p><br></p><p dir="ltr">The second study investigates the effectiveness of different integration strategies for an auxiliary composite PCM/copper TES block integrated alongside a cold plate, for thermal management of high-power power electronics modules, specifically for electric vehicles. These systems are evaluated for realistic drive cycles of various driving intensities. Computational results indicate that this approach is most effective when the composite TES block is positioned directly above the heat-generating silicon carbide dies. This configuration excels at stabilizing transient temperature fluctuations and absorbing thermal shocks, achieving reductions of up to approximately ~33% compared to current thermal management techniques. This strategy is particularly effective for stop-and-go drive cycles characterized by high rates of acceleration and deceleration, low average driving speeds, and frequent stops, typical of driving schedules for public transport buses and mail delivery vehicles.</p><p><br></p><p dir="ltr">The results from both thermal management approaches demonstrate that the integration of a PCM cooling solution in close proximity to the heat source can significantly enhance its effectiveness by absorbing power bursts and limiting temperature instability via repeated melting and solidification. The contributions of this dissertation include the development of an effective optimization strategy for generating optimized PCM distributions, which reduces the maximum temperature and temperature oscillations in a device with significant computational efficiency. (The same optimization strategy can be applied to other thermal management design challenges.) Notably, TTVs of realistic microelectronics form factors with embedded PCM were designed, modeled, fabricated, and validated. With the PCM thermal buffers, the engineered solution demonstrated superior performance compared to a baseline all-silicon TTV. The second study into the integration of composite PCM/copper TES blocks into high-power power electronics modules established trade-offs between different architectures across various performance metrics, and highlighted its effectiveness for drive cycles with varying intensities. These findings offer an important contribution to the development of embedded thermal management techniques for electronic systems design, which will be critical for the advancement of next-generation microelectronics and high-power devices.</p>

  1. 10.25394/pgs.26359948.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/26359948
Date26 July 2024
CreatorsMeghavin Chandulal Bhatasana (19201084)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/PHASE_CHANGE_MATERIALS_FOR_DIE_AND_COMPONENT_LEVEL_THERMAL_MANAGEMENT/26359948

Page generated in 0.0015 seconds