Return to search

Vývoj součinitele tření a mazacího filmu v implantátu kolenní náhrady v průběhu cyklu chůze / Development of the coefficient of friction and lubrication film in a total knee replacement during a gait cycle

This master´s thesis deals with the experimental analysis of the coefficient of friction and lubrication film in total knee replacement. The experiments are performed on a knee joint simulator, with an implemented module for measuring friction. To observe film formation, fluorescent microscopy is used. The experiments are mainly focused on a detailed description of the influence of parameters occurring during the gait cycle. This approach should significantly help in describing the tribological processes that occur in the total knee replacement. The results confirm previous investigations in terms of axial load, where the coefficient of friction decreases with the increasing load. In the case of lubrication film, no significant changes are observed. On the contrary, while investigating the influence of SRR, noticeable changes in film formation are observed while the coefficient of friction being unaffected. While describing the whole gait cycle, precise results are obtained only in the first half of the cycle as the second half is accompanied by the occurrence of large deviations from a rapid decrease of load. This work provides a better understanding of the field of lubrication film in total knee replacements. Moreover, thanks to the simultaneous measurement of the coefficient of friction and the observation of the contact area, it is possible to draw better conclusions than if the experiments had been carried out separately.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442825
Date January 2021
CreatorsOdehnal, Lukáš
ContributorsHorák, Zdeněk, Ranuša, Matúš
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds