This dissertation investigates the development of numerical algorithms for coupling computational fluid dynamics (CFD) and computational solid dynamics (CSD) solvers, and the use of these solvers for simulating fluid-solid interaction (FSI) problems involving large deformation, shock waves, and multiphase flow. The dissertation consists of two parts. The first part investigates the use of Robin interface conditions to resolve the well-known numerical added-mass instability, which affects partitioned coupling procedures for solving problems with incompressible flow and strong added-mass effect. First, a one-parameter Robin interface condition is developed by linearly combining the conventional Dirichlet and Neumann interface conditions. Next, a numerical algorithm is developed to implement the Robin interface condition in an embedded boundary method for coupling a parallel, projection-based incompressible viscous flow solver with a nonlinear finite element solid solver. Both an analytical study and a numerical study reveal that the new algorithm can clearly outperform conventional Dirichlet-Neumann procedures in terms of both stability and accuracy, when the parameter value is carefully selected. Moreover, the studies also indicate that the optimal parameter value depends on the materials and geometry of the problem. Therefore, to efficiently solve FSI problems involving non-uniform structures, a generalized Robin interface condition is presented, in which the constant parameter is replaced by a spatially varying function that depends on the local material and geometric properties of the structure. Numerical experiments using two benchmark problems show that the spatially varying Robin interface condition can clearly improve numerical accuracy compared to the constant- parameter version with the same computational cost.
The second part of this dissertation focuses on simulating complex FSI problems featuring shock waves, multiphase flow (e.g., bubbles), and shock-induced material damage and fracture. A recently developed three-dimensional computational framework is employed, which couples a multiphase, compressible CFD solver and a nonlinear finite element CSD solver using an embedded boundary method and a partitioned procedure. In particular, the CFD solver applies a level-set method to capture the evolution of the bubble surface, and the CSD solver utilizes a continuum damage mechanics model and an element erosion method to simulate the dynamic fracture of the material. Two computational studies are presented. The first one investigates the dynamic response and failure of a brittle material exposed to a prescribed shock wave. The predictive capability of the computational framework is first demonstrated by simulating a series of laboratory experiments in the context of shock wave lithotripsy. Then, a parametric study is conducted to elucidate the significant effects of the shock wave's profile on material damage. In the second study, the computational framework is applied to simulate shock-induced bubble collapse near various solid and soft materials. The reciprocal effect of the material's properties (e.g., acoustic impedance, Young's modulus) on bubble dynamics is discussed in detail. / Doctor of Philosophy / Numerical simulations that couple computational fluid dynamics (CFD) solvers and computational solid dynamics (CSD) solvers have been widely used in the solution of nonlinear fluid-solid interaction (FSI) problems underlying many engineering applications. This is primarily because they are based on partitioned solutions of fluid and solid subsystems, which facilitates the use of existing numerical methods and computational codes developed for each subsystem. The first part of this dissertation focuses on developing advanced numerical algorithms for coupling the two subsystems. The aim is to resolve a major numerical instability issue that occurs when solving problems involving incompressible, heavy fluids and thin, lightweight structures. Specifically, this work first presents a new coupling algorithm based on a one-parameter Robin interface condition. An embedded boundary method is developed to enforce the Robin interface condition, which can be advantageous in solving problems involving complex geometry and large deformation. The new coupling algorithm has been shown to significantly improve numerical stability when the constant parameter is carefully selected. Next, the constant parameter is generalized into a spatially varying function whose local value is determined by the local material and geometric properties of the structure. Numerical studies show that when solving FSI problems involving non-uniform structures, using this spatially varying Robin interface condition can outperform the constant-parameter version in both stability and accuracy under the same computational cost. In the second part of this dissertation, a recently developed three-dimensional multiphase CFD - CSD coupled solver is extended to simulate complex FSI problems featuring shock wave, bubbles, and material damage and fracture. The aim is to understand the material’s response to loading induced by a shock wave and the collapse of nearby bubbles, which is important for advancing the beneficial use of shock wave and bubble collapse for material modification. Two computational studies are presented. The first one investigates the dynamic response and failure of a brittle material exposed to a prescribed shock wave. The causal relationship between shock loading and material failure, and the effects of the shock wave’s profile on material damage are discussed. The second study investigates the shock-induced bubble collapse near various solid and soft materials. The two-way interaction between bubble dynamics and materials response, and the reciprocal effects of the material’s properties are discussed in detail.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/93514 |
Date | 09 September 2019 |
Creators | Cao, Shunxiang |
Contributors | Aerospace and Ocean Engineering, Wang, Kevin Guanyuan, Choi, Seongim Sarah, Roy, Christopher J., Neu, Wayne L., Canfield, Robert A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0026 seconds