This thesis summarises research on the improved design, integration and expansion of past cortex-like computer vision models, following biologically-inspired methodologies. By adopting early theories and algorithms as a building block, particular interest has been shown for algorithmic parameterisation, feature extraction, invariance properties and classification. Overall, the major original contributions of this thesis have been: 1. The incorporation of a salient feature-based method for semantic feature extraction and refinement in object recognition. 2. The design and integration of colour features coupled with the existing morphological-based features for efficient and improved biologically-inspired object recognition. 3. The introduction of the illumination invariance property with colour constancy methods under a biologically-inspired framework. 4. The development and investigation of rotation invariance methods to improve robustness and compensate for the lack of such a mechanism in the original models. 5. Adaptive Gabor filter design that captures texture information, enhancing the morphological description of objects in a visual scene and improving the overall classification performance. 6. Instigation of pioneering research on Spiking Neural Network classification for biologically-inspired vision. Most of the above contributions have also been presented in two journal publications and five conference papers. The system has been fully developed and tested in computers using MATLAB under a variety of image datasets either created for the purposes of this work or obtained from the public domain.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:578038 |
Date | January 2013 |
Creators | Tsitiridis, Aristeidis |
Contributors | Richardson, M. |
Publisher | Cranfield University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://dspace.lib.cranfield.ac.uk/handle/1826/8029 |
Page generated in 0.0012 seconds