Probing orientations of fluorescent molecules embedded in or attached to cell membranes has a great potential to reveal information on membrane structure and processes occurring in living cells. In this thesis, we first describe one- and two-photon linear dichroism measurements on a fluorescent probe embedded in a phospholipid membrane with a well- defined lipid composition. On the basis of experimental data, we determine the distribution of the angle between the one-photon transition dipole moment of the probe and the membrane normal. At the same time, we perform molecular dynamics simulations of the fluorescent probe and quantum calculations of its one-photon and two-photon absorption properties. By comparing the orientational distribution gained from experiments with that predicted by simulations, we test the ability of linear dichroism measurements to report on the orientation of a fluorescent molecule in a lipid membrane. We also examine the applicability of molecular simulations as a basis for the interpretation of experimental data.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:330271 |
Date | January 2013 |
Creators | Timr, Štěpán |
Contributors | Jungwirth, Pavel, Pittner, Jiří |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds