Return to search

Reactions of Manganese Hydrides with Amine-Boranes and Fluoroalkenes

Organofluorine compounds find various applications ranging from pharmaceuticals to refrigerants, insecticides, high-value fluoropolymers and reagents in catalysis. However, the synthesis of organofluorine compounds depends on toxic chemicals such as hydrogen fluoride, chlorinated hydrocarbons, reactive F2 gas and environmentally persistent long-chain fluorosurfactants. Recently more sustainable, energy-efficient syntheses have been developed using base metal-catalyzed transformations of fluoroalkenes and the formation and functionalization of d6-8 fluorometallacycles. In this thesis, we use manganese complex precursors to prepare the first examples of d4 fluorometallacycles.
Work in Chapter 2 describes the synthesis and one-electron reduction of manganese bis(diphosphine)- and tetrakis(phosphite) dibromide complexes, MnBr2(P-P)2 and MnBr2[P(O-i-Pr)3]4 and reactions of the corresponding reduced Mn(I)Br complexes with tetrafluoroethylene (TFE). Products proposed to be d4 perfluorometallacycles, MnBr[-CF2(CF2)2CF2-](P-P) proved to be unstable, reforming TFE upon application of vacuum. In Chapter 3 we show that photolysis of ligated manganese(I) carbonyl bromide complexes, MnBrLn(CO)5-n, in the presence of TFE, chlorotrifluoroethylene (CTFE) or perfluoro(methyl vinyl ether) (PMVE) in tetrahydrofuran affords the Mn-H insertion products, Mn(CF2CFXH)(L2)(CO)3 (X = F, Cl, OCF3) only for L2 = DPPE [1,2-bis(diphenylphosphino)ethane] as well as a solid by-product proposed to be MnBr2Ln. These reactions are accompanied by THF fluoroalkylation products, O[-(CH2)3CH(CF2CFHX)-]. By switching to methyl t-butyl ether solvent, we showed that exhaustive photolysis of MnBr(CO)5 + 3 equiv. of DPPE gave a new product proposed to be the first stable d4 fluorometallacycle, MnBr[-(CF2)4-](CO)(DPPE). Reactions of the fluoroalkenes with zerovalent Mn2(CO)10 also contributed to our understanding of potential reaction pathways to form these Mn-H-derived products.
Previous work in the Baker group compared FeH2(dmpe)2 and [FeH(H2)(dmpe)2]+ as catalysts for the dehydrogenation of amine-boranes [dmpe = 1,2-bis(dimethylphosphino)ethane]. In Chapter 4 the catalytic reactivity and selectivity of MnH(H2)(dmpe)2 are compared with those observed using the Fe analogs and the catalyst resting state, Mn(2-BH4)(dmpe)2, is identified.
Finally, in Chapter 5 we summarize the findings of this thesis and suggests future directions based on this work.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42613
Date31 August 2021
CreatorsBarnawi, Bakr
ContributorsBaker, R. Tom
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0139 seconds