Nous nous intéressons à la dynamique dans les systèmes de Hall en présence d'un flux Aharonov-Bohm dépendant du temps. Nous présenterons deux théorèmes adiabatiques applicable à ces modèles ainsi qu'un résultat sur l'existence d'une constante de mouvement non-trivial. On utilisera un algorithme de diagonalisation partielle. / We will ahve interest in the quantum dynamics in Hall systems with time dependent Aharonov-Bohm flux. We will present two adiabatic theorems which can applied to these models and a quantitive result on the existence of a non-trivial constant of motion. To prove this result, we will use a partial diagonalization algorithm
Identifer | oai:union.ndltd.org:theses.fr/2010AIX22116 |
Date | 25 November 2010 |
Creators | Meresse, Cédric |
Contributors | Aix-Marseille 2, Asch, Joachim |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds