Return to search

Pore Structure and Pore Solution in Alkali Activated Fly Ash Geopolymer Concrete and Its Effect on ASR of Aggregates with Wide Silicate Contents

Alkali silica reaction (ASR) is detrimental to concrete. It is a time-dependent phenomenon, which can lead to strength loss, cracking, volume expansion, and premature failure of concrete structures. In essence, it is a particular chemical reaction involving alkali hydroxides and reactive form of silica present within the concrete mix. Geopolymer is a type of alkaline activated binder synthesized through polycondensation reaction of geopolymeric precursor and alkali polysilicates. In this thesis, three types of reactive aggregates with different chemical compositions were used. Systematic laboratory experiments and microstructural analysis were carried out for the geopolymer concrete and the OPC concrete made with the same aggregates. The result suggests that the extent of ASR reaction due to the presence of three reactive aggregates in geopolymer concrete is substantially lower than that in OPC based concrete, which is explained by the pore solution change and verified through their microstructural variations and FTIR images.

Identiferoai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/31687
Date January 2019
CreatorsPaudel, Shree Raj
PublisherNorth Dakota State University
Source SetsNorth Dakota State University
Detected LanguageEnglish
Typetext/thesis
Formatapplication/pdf
RightsNDSU policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf

Page generated in 0.009 seconds