Submitted by (ana.araujo@ufrpe.br) on 2016-08-02T15:32:53Z
No. of bitstreams: 1
Luciano Rodrigues da Silva.pdf: 1477739 bytes, checksum: e1ea61981eacbff2c9319865f5504f91 (MD5) / Made available in DSpace on 2016-08-02T15:32:53Z (GMT). No. of bitstreams: 1
Luciano Rodrigues da Silva.pdf: 1477739 bytes, checksum: e1ea61981eacbff2c9319865f5504f91 (MD5)
Previous issue date: 2009-10-20 / Vegetation fires represent a natural hazard with severe ecological, social, health and economic consequences. Every year fires burn millions of hectares of forest worldwide and their number have been increasing, principally because of the increase in population and combustion material. The preservation of the environment depends on global and regional policies and methods of prevention and suppression of fires. To establish these methods it is necessarily to know the profile of fires: spatial location, time of occurrence, burned area, why they occur, and how they initiate and propagate. Recently, various methods of Statistical Physics (including data analysis and computational models) have been applied to provide additional information about spatial and temporal distribution of fire sequences, which is crucial for assessing various consequences of burning, such as emissions of gasses and particulates to the atmosphere, loss of biodiversity, loss of wildlife habitat, soil erosion etc. Several satellite systems (with different capabilities in terms of spatial resolution, sensitivity, spectral bands, and times and frequency of overpasses) are currently available for monitoring different fire characteristics: dry areas that are susceptible to wild fire outbreak, actively flaming fires, burned area and smoke, and trace gas emissions. Hotspots are satellite image pixels with infrared intensity corresponding to burning vegetation. A hotspot may represent one fire, or be one of several hotspots representing a larger fire. Together with other satellite data, thenumber of hot-spots can be used to estimate the burned area. In this work we study the dynamics of hotspots using the Detrended Fluctuation Analysis (DFA) method, which serves to quantify correlations in non stationary time series. We analyze daily hotspot temporal series detected in Brazil by various satellites during the period 1998-2008. The results show the existence of power-law long-range correlations that represent an important property of the underlying stochastic process. This property, also found in climatic phenomena, should be incorporated in theoretical models and computer simulations of the fire dynamics. / Incêndios em vegetação é um tipo de desastre natural com conseqüências ambientais, sociais econômicas, etc. Todos os anos incêndios destroem milhões de hectares das florestas e aumentam em número como conseqüência de vários fatores, principalmente de crescimento populacional e acúmulo de material combustível. A preservação de meio ambiente depende das políticas protecionistas globais e regionais adequadas às características de cada região. Para estabelecer essas políticas de controle e prevenção é necessário conhecer o perfil dos incêndios florestais: onde, quando e porque ocorrem. Além das estatísticas de ocorrências de incêndios os métodos emergentes da Física Estatística incluindo análise de dados e modelos computacionais, providenciam as informações adicionais sobre a distribuição e agrupamento espaço-temporal dos incêndios, que são cruciais para o estudo de várias conseqüências de fogo, como emissão de gases e partículas em atmosfera, perda de biodiversidade, erosão de solo, etc. Vários satélites (com características diferentes em termos de resolução espacial, bandas espectrais, tempo e freqüência de escaneamento) são disponíveis para monitoramento das varias características de fogos: áreas de risco, incêndios atualmente ativos, área queimada, fumaça, emissão de poluentes etc. Focos de calor são pixels na imagem de satélite com intensidade infravermelha correspondente a vegetação queimada. Um foco pode representar uma queimada, parte de um incêndio maior ou outras fontes de calor como, por exemplo, a reflexão de luz da superfície de um lago. O número de focos junto com outras informações providenciadas pelos satélites podem ser usados para estimar a área queimada, para detecção e monitoramento dos incêndios florestais, estimação de risco de fogo, e para avaliação da influencia de outros fatores ambientais. Neste trabalho estudamos a dinâmica de focos de calor no Brasil usando o método Detrended Fluctuation Analysis (DFA), desenvolvido para quantificar as correlações em séries temporais não estacionárias. Analisamos séries temporais diárias de focos de calor detectados no Brasil pelo vários satélites, durante o período 1998-2008. Os resultados mostram a existência de correlações de longo alcance persistentes, que representa uma propriedade importante dos processos estocásticos geradores desse fenômeno. Esta propriedade, também presente em fenômenos climáticos deveria ser incorporada em modelos teóricos e simulações computacionais de dinâmica de incêndios.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede2/5157 |
Date | 20 October 2009 |
Creators | SILVA, Luciano Rodrigues da |
Contributors | STOSIC, Tatijana, STOSIC, Borko, OLIVEIRA JÚNIOR, Wilson Rosa de, FIGUEIRÊDO, Pedro Hugo de |
Publisher | Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biometria e Estatística Aplicada, UFRPE, Brasil, Departamento de Estatística e Informática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE |
Rights | info:eu-repo/semantics/openAccess |
Relation | 768382242446187918, 600, 600, 600, -6774555140396120501, -5836407828185143517 |
Page generated in 0.0135 seconds