Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap. / Let M be a Riemanniana manifold with nonnegative sectional curvature. A singular Riemannian foliation in M is a singular foliation with locally equidistant leaves. The dual leaf though p is the collection of the all points q in M such that p and q are connected with a piece-wise horizontal geodesic. The partition of M into the dual leaves is a singular foliation called dual foliation. Wilking proved that if the sectional curveture is positive, then the dual foliation consists of a single leaf. In other words, any two points in M can be connected with a piece-wise horizontal geodesic. In order to prove this result Wilking showed that, if M is nonnegatively curved, the normal bundle of a dual leaf along a piecewise horizontal geodesic is gerated for parallel Jacobi field. These results are used in the proof that the projection metric in the soul is smoth.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-26062014-114617 |
Date | 23 August 2013 |
Creators | Benigno Oliveira Alves |
Contributors | Marcos Martins Alexandrino da Silva, Luiz Roberto Hartmann Júnior, Dirk Toben |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds