Return to search

Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent

Hierarchical systems that integrate nano- and macroscale structural elements can offer enhanced stability over traditional immobilization methods. Microparticles were synthesized using interfacial assembly of lipase with (CLMP-N) and without (CLMP) nanoparticles into a crosslinked polymeric core, to determine the impact of the highly ordered system on lipase stability in extreme environments. Kinetic analysis revealed the macrostructure significantly increases the turnover rate (kcat) following immobilization. The macrostructure also stabilized lipase at neutral and basic pH values, while the nanoparticles influenced stability under acidic pH conditions. A greener solvent, choline chloride and urea, was applied to produce sugar ester surfactants. Microparticles exhibited decreases in the turnover rate (kcat) and catalytic efficiency (kcat/Km) following exposure, but retained over 60% and 20% activity after exposure at 50 ºC and 60 ºC, respectively. CLMP and CLMP-N outperformed the commercially available lipase per unit protein in the production of sugar esters. The utilization of greener solvent systems with hierarchical immobilized enzyme systems has the potential to improve processing efficiency and sustainability for the production of value-added agricultural products.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1372
Date13 July 2016
CreatorsAndler, Stephanie M
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0015 seconds