Return to search

Introduction à l’apprentissage automatique en pharmacométrie : concepts et applications

L’apprentissage automatique propose des outils pour faire face aux problématiques d’aujourd’hui et de demain. Les récentes percées en sciences computationnelles et l’émergence du phénomène des mégadonnées ont permis à l’apprentissage automatique d’être mis à l’avant plan tant dans le monde académique que dans la société. Les récentes réalisations de l’apprentissage automatique dans le domaine du langage naturel, de la vision et en médecine parlent d’eux-mêmes. La liste des sciences et domaines qui bénéficient des techniques de l’apprentissage automatique est longue.
Cependant, les tentatives de coopération avec la pharmacométrie et les sciences connexes sont timides et peu nombreuses. L’objectif de ce projet de maitrise est d’explorer le potentiel de l’apprentissage automatique en sciences pharmaceutiques. Cela a été réalisé par l’application de techniques et des méthodes d’apprentissage automatique à des situations de pharmacologie clinique et de pharmacométrie. Le projet a été divisé en trois parties. La première partie propose un algorithme pour renforcer la fiabilité de l’étape de présélection des covariables d’un modèle de pharmacocinétique de population. Une forêt aléatoire et l’XGBoost ont été utilisés pour soutenir la présélection des covariables. Les indicateurs d’importance relative des variables pour la forêt aléatoire et pour l’XGBoost ont bien identifié l’importance de toutes les covariables qui avaient un effet sur les différents paramètres du modèle PK de référence. La seconde partie confirme qu’il est possible d’estimer des concentrations plasmatiques avec des méthodes différentes de celles actuellement utilisés en pharmacocinétique. Les mêmes algorithmes ont été sélectionnés et leur ajustement pour la tâche était appréciable. La troisième partie confirme la possibilité de faire usage des méthodes d'apprentissage automatique pour la prédiction de relations complexes et typiques à la pharmacologie clinique. Encore une fois, la forêt aléatoire et l’XGBoost ont donné lieu à un ajustement appréciable. / Machine learning offers tools to deal with current problematics. Recent breakthroughs in computational sciences and the emergence of the big data phenomenon have brought machine learning to the forefront in both academia and society. The recent achievements of machine learning in natural language, computational vision and medicine speak for themselves. The list of sciences and fields that benefit from machine learning techniques is long.
However, attempts to cooperate with pharmacometrics and related sciences are timid and limited. The aim of this Master thesis is to explore the potential of machine learning in pharmaceutical sciences. This has been done through the application of machine learning techniques and methods to situations of clinical pharmacology and pharmacometrics. The project was divided into three parts. The first part proposes an algorithm to enhance the reliability of the covariate pre-selection step of a population pharmacokinetic model. Random forest and XGBoost were used to support the screening of covariates. The indicators of the relative importance of the variables for the random forest and for XGBoost recognized the importance of all the covariates that influenced the various parameters of the PK model of reference. The second part exemplifies the estimation of plasma concentrations using machine learning methods. The same algorithms were selected and their fit for the task was appreciable. The third part confirms the possibility to apply machine learning methods in the prediction of complex relationships, as some typical clinical pharmacology relationships. Again, random forest and XGBoost got a nice adjustment.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26005
Date05 1900
CreatorsLeboeuf, Paul-Antoine
ContributorsNekka, Fahima
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0096 seconds