Assessment is the primary means of feedback between students and instructors. However, to effectively use assessment, the ability to interpret collected information is essential. We present insights into three unique, important avenues of assessment in the physics classroom and laboratory. First, we examine students’ performance on conceptual surveys. The goal of this research project is to better utilize the information collected by instructors when they administer the Force Concept Inventory (FCI) to students as a pre-test and post-test of their conceptual understanding of Newtonian mechanics. We find that ambiguities in the use of the normalized gain, g, may influence comparisons among individual classes. Therefore, we propose using stratagrams, graphical summaries of the fraction of students who exhibit “Newtonian thinking,” as a clearer, more informative method of both assessing a single class and comparing performance among classes. Next, we examine students’ expressions of confusion when they initially encounter new material. The goal of this research project is to better understand what such confusion actually conveys to instructors about students’ performance and engagement. We investigate the relationship between students’ self-assessment of their confusion over material and their performance, confidence in reasoning, pre-course self-efficacy and several other measurable characteristics of engagement. We find that students’ expressions of confusion are negatively related to initial performance, confidence and self-efficacy, but positively related to final
performance when all factors are considered together. Finally, we examine students’ exhibition of scientific reasoning abilities in the instructional laboratory. The goal of this research project is to explore two inquiry-based curricula, each of which proposes a different degree of scaffolding. Students engage in sequences of these laboratory activities during one semester of an introductory physics course. We find that students who participate in the less scaffolded activities exhibit marginally stronger scientific reasoning abilities in distinct exercises throughout the semester, but exhibit no differences in the final, common exercises. Overall, we find that, although students demonstrate some enhanced scientific reasoning skills, they fail to exhibit or retain even some of the most strongly emphasized skills. / Physics
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9282889 |
Date | 23 July 2012 |
Creators | Dowd, Jason |
Contributors | Mazur, Eric |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0015 seconds