Adams conjectured that unknotting tunnels of tunnel number 1 manifolds are always isotopic to a geodesic. We generalize this question to tunnel number n manifolds. We find that there exist complete hyperbolic structures and a choice of spine of a compression body with genus 1 negative boundary and genus n ≥ 3 outer boundary for which (n−2) edges of the spine self-intersect. We use this to show that there exist finite volume one-cusped hyperbolic manifolds with a system of n tunnels for which (n−1) of the tunnels are homotopic to geodesics arbitrarily close to self-intersecting. This gives evidence that the generalization of Adam's conjecture to tunnel number n ≥ 2 manifolds may be false.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4306 |
Date | 02 July 2012 |
Creators | Burton, Stephan Daniel |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0021 seconds