This study was issued by Swedbank because they wanted too improve their GDP growth forecast capabilites. A program was developed and tested on six countries; USA, Sweden, Germany, UK, Brazil and Norway. In this paper I investigate if I can reduce forecasting error for GDP growth by taking a smart average from a variety of models compared to both the best individual models and a random walk. I combine the forecasts from four model groups: Vector autoregression, principal component analysis, machine learning and random walk. The smart average is given by a system that give more weight to the predictions of models with a lower historical error. Different weighting schemas are explored; how far into the past should we look? How much should bad performance be punished? I show that for the six countries studied the smart average outperforms the single best model and that for five out of six countries it beats a random walk by at least 25%. / Den här studien beställdes av Swedbank eftersom de ville förbättra sin BNP-prediktionsförmåga. Ett dataprogram utvecklades och testades på sex länder; USA, Sverige, Tyskland, Storbritannien, Brasilien och Norge. I den här rapporten undersöker jag om jag kan minska felmarginalen för BNP-utvecklingsprognoser genom att ta ett smart genomsnitt från flera olika modeller jämfört med både den bästa individuella modellen och en random walk. Jag kombinerar prognoser från fyra modellgrupper: Vektor autoregression, principalkomponentanalys, maskininlärning och random walk. Det smarta genomsnittet skapas genom att ge mer vikt till de modeller som har lägst historiskt felmarginal. Olika viktningsscheman utforskas; hur långt bak i tiden ska vi mäta? Hur hårt ska dåliga prediktioner bestraffas? Jag visar att för de sex länderna i studien presterar det smarta genomsnittet bättre än den enskilt bästa modellen och fem av de sex länderna slår en random walk med mer än 25%.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-131718 |
Date | January 2017 |
Creators | Lundberg, Otto |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds