Return to search

The consolidation of forecests with regression models

The primary objective of this study was to develop a dashboard for the consolidation of multiple forecasts utilising a range of multiple linear regression models. The term dashboard is used to describe with a single word the characteristics of the forecasts consolidation application that was developed to provide the required functionalities via a graphical user interface structured as a series of interlinked screens. Microsoft Excel© was used as the platform to develop the dashboard named ConFoRM (acronym for Consolidate Forecasts with Regression Models). The major steps of the consolidation process incorporated in ConFoRM are: 1. Input historical data. Select appropriate analysis and holdout samples. 3. Specify regression models to be considered as candidates for the final model to be used for the consolidation of forecasts. 4. Perform regression analysis and holdout analysis for each of the models specified in step 3. 5. Perform post-holdout testing to assess the performance of the model with best holdout validation results on out-of-sample data. 6. Consolidate forecasts. Two data transformations are available: the removal of growth and time-periods effect from the time series; a translation of the time series by subtracting ̅i, the mean of all the forecasts for data record i, from the variable being predicted and its related forecasts for each data record I. The pre-defined regression models available for ordinary least square linear regression models (LRM) are: a. A set of k simple LRM’s, one for each of the k forecasts; b. A multiple LRM that includes all the forecasts: c. A multiple LRM that includes all the forecasts and as many of the first-order interactions between the input forecasts as allowed by the sample size and the maximum number of predictors provided by the dashboard with the interactions included in the model to be those with the highest individual correlation with the variable being predicted; d. A multiple LRM that includes as many of the forecasts and first-order interactions between the input forecasts as allowed by the sample size and the maximum number of predictors provided by the dashboard: with the forecasts and interactions included in the model to be those with the highest individual correlation with the variable being predicted; e. A simple LRM with the predictor variable being the mean of the forecasts: f. A set of simple LRM’s with the predictor variable in each case being the weighted mean of the forecasts with different formulas for the weights Also available is an ad hoc user specified model in terms of the forecasts and the predictor variables generated by the dashboard for the pre-defined models. Provision is made in the regression analysis for both of forward entry and backward removal regression. Weighted least squares (WLS) regression can be performed optionally based on the age of forecasts with smaller weight for older forecasts.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10582
Date January 2014
CreatorsVenter, Daniel Jacobus Lodewyk
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Formatxxi, 271 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0025 seconds