Return to search

Dynamic Multi-species Animal Habitat Modeling with Forest Succession Models

This research determines and demonstrates the ability to simulate dynamic multispecies animal habitat suitability with forest succession models. A literature review of dynamic animal habitat models is presented. The structure of an existing forest simulation model (MASS10) was modified from a basal area-based model to a volume-based model (DYNAM10). The forest model was calibrated using data from permanent-plot growth and vegetation samples collected by USDA Forest Service Forest Survey procedures. The theoretical growth parameters used to simulate stand development were validated. Predictions of DBH and height growth, as well as stand-level behavior, were verified. A subroutine, VEGDYN, was added to DYNAMlO to simulate 34 structural vegetation parameters required by animal Habitat Suitability Index (HSI) models. Predictions of the structural parameters were verified. Ten animal-species HSI models were linked to DYNAMlO via the program HSI.FOR, and predicted dynamic HSI values were verified by hand-calculation. Typical patterns of dynamic HSI predictions are presented and discussed.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7589
Date01 May 1992
CreatorsCompton, Stephen A.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0154 seconds