Return to search

Investigating the long-term influence of atmospheric acid deposition and forest disturbance on soil chemistry and cation nutrient supplies in a forested ecosystem of southern Quebec

The objective of this thesis was to validate the dynamic model SAFE (Soil Acidification in Forested Ecosystems) in a small deciduous watershed of southern Quebec. SAFE could then be used to: (1) identify which processes are governing acidification, and (2) assess the rates of acidification according to various forest conditions. / Soil and soil solution chemistry between unburned and burned zones following fire disturbance seventy-five years ago was examined within the watershed. Results showed two major, statistically significant, differences: (1) higher base status, and (2) lower soil solution N in the burned zone. High quality leaf litter of aspen and birch (burned zone) relative to that of sugar and red maple (unburned zone) has contributed to the enrichment of base cations in the forest floor. The enrichment of the forest floor did not however impoverish the B horizon as seen in other studies. Rather, fire enriched the soil in base cations and buffered the effect of forest regrowth in the B horizon. / The MAKEDEP model was used to reconstruct the time-series input files needed to run SAFE. In MAKEDEP, the availability of N determines tree growth which in turn, affects most of the processes involved in nutrient cycling. Regressions of measured deposition at the Hubbard Brook Experimental Forest and that of simulated deposition at the study site suggest MAKEDEP is suitable to model the deposition trends of all elements except Na. / SAFE was calibrated for the unburned and burned conditions at the study site. Fire disturbance and forest regrowth have produced different soil chemical composition within the zones as discussed above. SAFE was therefore validated at the study site as a function of its ability to reproduce soil chemistry under unburned and burned conditions. The simulated soil chemistry was in close agreement with the measured unburned soil conditions, but some processes would have to be clarified or accounted for with greater accurately, e.g., biological N fixation and N immobilization by myccorhizal fungi, to reproduce more accurately the measured burned soil chemistry. Simulated soil chemistry in the unburned zone reinforced nevertheless the conclusions of a few historical soil chemistry studies supporting the hypothesis that acid-sensitive forest sites of the United States underwent significant acidification during 1930--1980 during major input of acidity from the atmosphere. Model output suggests that cation nutrient deficiencies could occur in the long-term, but future Al phytotoxic responses are unlikely to occur due to a relatively high projected pH. (Abstract shortened by UMI.)

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.36542
Date January 2000
CreatorsBélanger, Nicolas, 1971-
ContributorsHendershot, William H. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Natural Resource Sciences.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001782995, proquestno: NQ69852, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds