Forest plantations in the southeastern U.S. are fertilized to increase growth on infertile, sandy soils. Nitrogen (N) and phosphorus (P) are the most common growth limiting nutrients. A key question that arises following fertilization of these soils is whether the applied fertilizer benefits only the current trees in the stand or also improves long-term site quality. The objectives of this study were to compare accumulation of N and P in the forest floor and mineral soil among unfertilized and fertilized plantations, determine soluble and residual N and P fractions and soluble carbohydrate and phenol fractions in foliage and litter, determine whether higher N in the forest floor from fertilization resulted in increased release of N from the forest floor and increased mineral soil N availability, and determine loblolly pine forest floor decomposition rate and release of nutrients in a simulated disturbance environment. Research was conducted at a 25-year old loblolly pine (Pinus taeda L.) plantation in NC (SETRES) and 13-year old loblolly pine and sweetgum (Liquidambar styraciflua L.) plantations in GA (Mt. Pleasant). Fertilization resulted in increases in mineral soil N that were likely to be temporary and not sustained following cessation of fertilization N applications. This was likely due to an inability of acidic, sandy mineral soils to retain NH4-N and NO3-N. The forest floor accumulated N due to slow release of N during decomposition. Fertilization with N results in only temporary increases in mineral soil N availability that occur during fertilizer application and from forest floor decomposition. Future changes in N availability are primarily determined by decomposition of the forest floor following a disturbance that accelerates decomposition. In contrast to N, fertilization of loblolly pine and sweetgum with P results in a long-term increase in site P availability. Fertilization with P has lasting effects by increasing mineral soil P in stable forms that can be made available for plant uptake over time suggesting increased supply of P to trees in the next rotation. Retention of P in the mineral soil was likely due to the tendency of acidic, sandy mineral soils to accumulate P in Al- and Fe-phosphates. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/28989 |
Date | 03 October 2011 |
Creators | Kiser, Larry Christopher |
Contributors | Forestry, Fox, Thomas R., Richter, Daniel D., Berry, Duane F., Seiler, John R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Kiser_CK_D_2011.pdf |
Page generated in 0.0024 seconds