Return to search

Estimativa volumétrica por modelo misto e tecnologia laser aerotransportado em plantios clonais de Eucalyptus sp / Estimating Eucalyptus forest plantation volume by mixed-effect model and by LiDAR-based model

O trabalho se estruturou em torno de dois estudos. O primeiro avaliou o ajuste de um modelo não linear de efeito misto para descrever o afilamento do tronco de árvores clonais de eucalipto. O modelo utilizado para descrever as variações da altura em função do raio foi o logístico de quatro parâmetros que, por integração permitiu a estimação do volume das árvores. A incorporação de funções de variância no processo de ajuste resultou em redução significativa no valor do Critério de informação de Akaike, mas os resíduos não apresentaram melhorias notáveis. Com a finalidade de compatibilizar precisão e parcimônia, o modelo que considera as variações do afilamento como uma função da altura total e do raio à altura do peito mostrou-se como o mais indicado para a estimativa do volume de árvores por funções de afilamento. O segundo estudo analisou uma nova proposta para inventários florestais em plantios clonais de eucalipto que integra modelagem geoestatística, medições de circunferência das árvores em campo e a tecnologia LiDAR aeroembarcada. As estatísticas propostas mostraram que o modelo geoestatístico com função para média foi estatisticamente superior ao modelo com média constante, com erros reduzidos em até 40%. A altura das árvores que compuseram o grid de predição para aplicação do modelo geoestatístico foi obtida pelo processamento da nuvem de pontos dos dados LiDAR. Obtidos os pares de diâmetro e altura, aplicou-se o modelo de afilamento selecionado no primeiro artigo em que se observaram diferenças médias na predição do volume próximas a 0,7%, e 0,18% para contagem de árvores, ambas com tendências de subestimativas. Diante dos resultados obtidos, o método é considerado como promissor e trabalhos futuros visam gerar um banco de parcelas permanentes que propiciem estudos de crescimento e produção florestal. / This study investigates the use of mixed-effect model and the use of LiDAR based model to estimate volume from eucalyptus forest plantation. At the first part, this study evaluates nonlinear mixed-effects to model stem taper of monoclonal Eucalyptus trees. The relation between radius and height variation was described by the four-parameter logistic model that integration returns stem volume. Embedding variance functions to the estimation process decreased significantly the Akaike\'s Information Criterion but did not improve the residual analysis. The best model to estimate stem volume from taper equations explained the stem taper as a function of the commercial height and the radius at breast height. The second part investigated the volume estimation fusing geostatistic derived from field information and airborne laser scanning data. The model based on geostatistic assumptions was statistically superior to the traditional one, with errors 40% lower. Thus, the geostatistical model was applied over tree heights extracted from the laser cloud. To each combination of diameter and height, the taper equation form the first part of this study was used. The volume and the number of trees were underestimated in 0.7% and 0.18%, respectively. The results look promising, and more permanent plots are necessary to allow studies about growth and yield of forest.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06092013-100239
Date29 July 2013
CreatorsSamuel de Pádua Chaves e Carvalho
ContributorsLuiz Carlos Estraviz Rodriguez, Natalino Calegario, Luis Marcelo Tavares de Carvalho, Taciana Villela Savian, Luciana Duque Silva
PublisherUniversidade de São Paulo, Recursos Florestais, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds