Human activities are increasing the occurrence of megafires that have the potential to alter the ecology of forest ecosystems. The objective of this study was to understand the impact of a 610 km2 megafire on patterns of forest regeneration and herbivory of three forest types (aspen/fir, oak/maple, and pinyon/juniper) within the burn scar. Sapling density, meristem removal, and height were measured across a transect network spanning the area of the burn scar over three years from 2019-2021. The network consisted of 17 burned/unburned transect pairs in adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper). Species that regenerated through sprouting generally responded positively to fire while regeneration from seed showed very little post-fire response. Browse pressure was concentrated on deciduous tree species and tended to be greater in burned areas but the effect diminished over time. Meristem removal of sprouting species was below the critical threshold resulting in positive vertical growth across years. Our results indicate that forest regeneration within the megafire scar was generally positive and experienced sustainable levels of ungulate browsing that are likely to result in forest recruitment success. Novel fire regimes are becoming increasingly common and megafires have burned across ecotonal boundaries across multiple forest types. Plant community structure and composition may be critically affected by changing fire regimes. Our objective was to investigate how a megafire that burned across multiple forest types impacted understory plant community assembly and biodiversity. Paired vegetation transects were installed in burned and unburned areas across aspen/fir, oak/maple, and pinyon/juniper forests within the 2018 Pole Creek Megafire burn scar. Percent cover of understory plants was measured in the summer of 2022 and plants were identified to the species level. Richness and diversity indices were then calculated and analyzed using mixed effects models. Fire decreased species richness of the aspen/fir forest understory and increased plant cover in pinyon/juniper forests, while not significantly impacting oak/maple understories. The significant effects of fire were largely driven by changes in forb species. Fire decreased the richness of native plants in aspen/fir forests but increased the richness of non-native plants in oak/maple and pinyon/juniper forests. Non-native plant abundance also increased in post-fire pinyon/juniper forests. Our results suggest that forest understory communities show variable responses to megafires that burn across multiple forest types with important implications for post-fire plant community structure, diversity, and invasibility. Large mammal herbivores (ungulates) are increasing in number and spreading into novel habitats throughout the world. Their impact on forest understory plant communities is strong and varies by herbivore, plant growth form, and season. The objective of this study was to determine the individual and collective herbivory impacts of native versus domestic ungulates on the understory plant community composition of post-fire aspen forests. Four-way fencing treatments were installed in 2012 to separate ungulate species, and Daubenmire frames were used to collect percent cover estimates for each understory plant species. Vegetation data were later used to calculate richness and diversity indices. Total understory plant cover, richness, and diversity were not significantly impacted by the herbivory fencing treatment. However, woody plant species' percent cover was 90% greater in full ungulate exclusion plots than in the fenceless controls. Herbivores likely targeted woody plant species due to their high nutrient levels that last longer into the winter than those of forb or graminoid species. Herbivory treatment did not affect non-native species. Our results indicate that herbivore fencing can protect forest understory plant communities, particularly the woody species. Successful regeneration of woody species can benefit the diversity of the entire understory plant community and preserve forest structure.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11237 |
Date | 06 December 2023 |
Creators | Tanner, Devri A. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0025 seconds