Sediment is a prevalent non-point source pollutant associated with forest operations. Roads and skid trail surfaces have erosion rates that are greater than the harvest area. Forestry best management practices (BMPs) have been developed to minimize erosion on skid trails, but few projects have compared the effectiveness of different BMPs for bladed skid trails in the mountains. This project evaluated soil erosion rates from bladed skid trails in the Ridge and Valley physiographic region of Virginia following an operational timber harvest. Skid trails were assigned into six blocks where each block had similar slopes and soils. All BMP treatments had waterbars, which are considered the minimum acceptable BMP closure treatment. Each block contained four different skid trail closure BMP treatments (waterbar only (Control), slash-covered (Slash), seeded (Seed), and seeded with fertilizer and mulch (Mulch)). The 24 treatment units were isolated with waterbars and installed following the Virginia Department of Forestry (VDOF) BMP guidelines. The randomized complete block design had three slope class ranges: gentle (0%-10%), moderate (11%-20%), and steep (21%-30%). Stormwater runoff from skid trails was directed at downslope waterbars and eroded material was trapped in silt fences at each treatment area. Depth and area of eroded soil collected in silt fences was measured monthly to quantify total erosion volume for the skid trail area and converted to a per acre basis. Volumes were converted to mass using soil bulk density within the trapped sediment. Control treatments had an average erosion rate of 6.8 tons ac-1 yr-1, with rates up to 73.5 tons ac-1 yr-1 following installation and during extreme rainfall events. Seed treatments recorded an average erosion rate of 2.6 tons ac-1 yr-1, with rates reaching 27.2 tons ac-1 yr-1. Adding grass seed provided ground cover, but not consistently over time. Due to high rates of ground cover, the Mulch treatments averaged 0.5 tons ac-1 yr-1 with an extreme of 3.8 tons ac-1 yr-1. Slash treatments were found to reduce erosion rates to an average of 0.4 tons ac-1 yr-1, with the highest rate being 1.8 tons ac-1 yr-1. Site characteristics on experimental units were collected quarterly in order to model erosion rates with commonly used erosion models for forestland (USLE-Forest, RUSLE2, WEPP:Road). Direct erosion estimates were compared to erosion model predictions produced by USLE-Forest, RUSLE2, and WEPP:Road in order to partially confirm the relationship between sediment trap data and the models. Using multiple analyses it was determined that USLE-Forest and RUSLE2 predicted mean values that are more similar to the actual measured rates, RUSLE2 and WEPP:Road have better linear relationships to the measured rates than does USLE-Forest, and USLE-Forest was the most statistically similar to the measured data using a nonparametric Steel-Dwass Multiple Comparisons Test. All models performed inadequately when attempting to predict Control or Slash treatments; while all models performed the best at predicting Mulch treatments. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71704 |
Date | 01 July 2016 |
Creators | Vinson, Joseph Andrew |
Contributors | Forest Resources and Environmental Conservation, Barrett, Scott M., Bolding, M. Chad, Aust, W. Michael |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0027 seconds