Return to search

Design And Thermo-mechanical Analysis Of Warm Forging Process And Dies

Forging temperature is one of the basic considerations in forging processes. In warm forging, the metals are forged at temperatures about the recrystallization temperature and below the traditional hot forging temperature. Warm forging
has many advantages when compared to hot and cold forging. Accuracy and surface finish of the parts is improved compared to hot forging while ductility is increased and forming loads are reduced when compared to cold forging. In this study, forging process of a part which is currently produced at the hot forging temperature range and which needs some improvements in accuracy, material usage and energy concepts, is analyzed. The forging process sequence
design with a new preform design for the particular part is proposed in warm forging temperature range and the proposed process is simulated using Finite Element Method. In the simulations, coupled thermal mechanical analyses are performed and the dies are modeled as deformable bodies to execute die stress analysis. Experimental study is also carried out in METU-BILTIR Center Forging Research and Application Laboratory and it has been observed that numerical and experimental results are in good agreement. In the study, material wastage is reduced by proposing using of a square cross section billet instead of a circular one, energy saving and better accuracy in part dimensions is achieved by reducing the forging temperature from the hot forging to the warm forging temperature range.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12608826/index.pdf
Date01 September 2007
CreatorsSarac, Sevgi
ContributorsGokler, Mustafa Ilhan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds