Return to search

Realizability in Coq / Realiserbarhet i Coq

This thesis describes a Coq formalization of realizability interpretations of arithmetic. The realizability interpretations are based on partial combinatory algebras—to each partial combinatory algebra there is an associated realizability interpretation. I construct two partial combinatory algebras. One of these gives a realizability interpretation equivalent to Kleene’s original one, without involving the usual recursion-theoretic machinery. / Den här uppsatsen beskriver en Coq-formalisering av realiserbarhetstolkningar av aritmetik. Realiserbarhetstolkningarna baseras på partiella kombinatoriska algebror—för varje partiell kombinatorisk algebra finns det en motsvarande realiserbarhetstolkning. Jag konstruerar två partiella kombinatoriska algebror. En av dessa ger en realiserbarhetstolkning som är ekvivalent med Kleenes ursprungliga tolkning, men dess konstruktion använder inte det sedvanliga rekursionsteoretiska maskineriet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-174109
Date January 2015
CreatorsLundstedt, Anders
PublisherKTH, Matematik (Avd.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-MAT-E ; 2015:71

Page generated in 0.0022 seconds