Return to search

Distributed Control for Robotic Swarms Using Centroidal Voronoi Tessellations

This thesis introduces a design combining an emerging area in robotics with a well established mathematical research topic: swarm intelligence and Voronoi tessellations, respectively. The main objective for this research is to design an economical and robust swarm system to achieve distributed control. This research combines swarm intelligence with Voronoi tessellations to localize a source and create formations. Extensive software coding must be implemented for this design, such as the development of a discrete centroidal Voronoi tessellation (CVT) algorithm.
The ultimate purpose of this research is to advance the existing Mobile Actuator and Sensor Network (MASnet) platform to eventually develop a cooperative robot team that can sense, predict, and nally neutralize a diusion process. Previous work on the MASnet platform has served as a foundation for this research. While growing closer to the MASnet goal, results also provide stimulating discoveries for mathematical and swarm research areas.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1222
Date01 December 2008
CreatorsRounds, Shelley
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds