Navigation and guidance of mobile robots towards steady or maneuvering objects (targets) is one of the most important areas of robotics that has attracted a lot of attention in recent decades. However, in most of the existing methods, both the line-of-sight angle (bearing) and the relative distance (range) are assumed to be available for navigation and guidance algorithms. There is also a relatively large body of research on navigation and guidance with bearings-only measurements. In contrast, only a few results on navigation and guidance towards an unknown target using range-only measurements have been published. Various problems of navigation, guidance, location estimation and target tracking based on range-only measurements often arise in new wireless networks related applications. Recent advances in these applications allow us to use inexpensive transponders and receivers for range-only measurements which provide information in dynamic and noisy environments without the necessity of line-of-sight. To take advantage of these sensors, algorithms must be developed for range-only navigation. The main part of this thesis is concerned with the problem of real-time navigation and guidance of Wheeled Mobile Robots (WMRs) towards an unknown stationary or moving target using range-only measurements. The range can be estimated using the signal strength and the robust extended Kalman filtering. Several similar algorithms for navigation and guidance termed Equiangular Navigation and Guidance (ENG) laws are proposed and mathematically rigorous proofs of convergence and stability of the proposed guidance laws are given. The experimental investigation into the use of range data for a WMR navigation is documented and the results and discussions on the performance of the proposed guidance strategies are presented, where a wheeled robot successfully approach a stationary or follow a maneuvering target. In order to safely navigate and reliably operate in populated environments, ENG is then modified into Augmented-ENG (AENG), which enables the robot to approach a stationary target or follow an unpredictable maneuvering object in an unknown environment, while keeping a safe distance from the target, and simultaneously preserving a safety margin from the obstacles. Furthermore, we propose and experimentally investigate a new biologically inspired method for local obstacle avoidance and give the mathematically rigorous proof of the idea. In order for the robot to avoid collision and bypass the enroute obstacles in this method, the angle between the instantaneous moving direction of the robot and a reference point on the surface of the obstacle is kept constant. The proposed idea is combined with the ENG law, which leads to a reliable and fast long-range navigation. The performance of both navigation strategy and local obstacle avoidance techniques are confirmed with computer simulations and several experiments with ActivMedia Pioneer 3-DX wheeled robots. The second part of the thesis investigates some challenging problems in the area of wheeled robot navigation. We first address the problem of bearing-only guidance of an autonomous vehicle following a moving target with smaller minimum turning radius compared to that of the follower and propose a simple and constructive navigation law. In compliance with the increasing research on decentralized control laws for groups of mobile autonomous robots, we consider the problems of decentralized navigation of network of WMRs with limited communication and decentralized stabilization of formation of WMRs. New control laws are presented and simulation results are provided to illustrate the control laws and their applications.
Identifer | oai:union.ndltd.org:ADTP/258223 |
Date | January 2009 |
Creators | Teimoori Sangani, Hamid, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Electrical Engineering & Telecommunications |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0023 seconds