Return to search

An Efficient On-Demand Point-To-Point Piconet Formation Scheme for Bluetooth Personal Area Network

In the short-range wireless communication and networking, Bluetooth is a promising technology, mainly used as a replacement for connected cables. Since the Bluetooth specification only defines how to build a Piconet, several solutions have been proposed to construct a Scatternet from the Piconets in the literatures. The process of constructing a Scatternet is called the Scatternet formation. The traditional scatternet formation has three defects: First, more power and time need to be consumed in order to construct the scatternet. Second, after the scatternet is formed, more power and bandwidth are required to maintain the connection of scatternet. Third, due to the restriction of topology, the communication between two nodes must be relayed through the bridge or master, even when they are in the communication range.
In this thesis, we propose a novel method in the transmission ranges of all the other nodes to form temporary point-to-point piconet only when two nodes want to communicate with each other. When the communication is finished, the temporary point-to-point piconet is destroyed immediately. Two nodes in the communication range can communicate with each other directly without the relay node. Our On-Demand Point-To-Point Piconet Formation (ODP2P) scheme resolves the defects of traditional scatternet formation in communication range. In order to reduce the communication delay, every node owns its list to record the information of all nodes within the communication range. An on-event method maintains the list. Network performance analysis and simulations show that our method can reduce the routing path significantly, provide better utilization for Bluetooth personal area network (PAN), and maintain the range list efficiently.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0903104-013356
Date03 September 2004
CreatorsLee, Song-Ying
ContributorsTsung-Chuan Huang, Chyi-Ren Dow, Ting-Wei Hou, Chungnan Lee, Tsang-Ling Sheu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0903104-013356
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.002 seconds