Return to search

Tuning Photovoltaic Properties of Two-dimensional Molybdenum Disulfide by Alloying: An ab initio study

Addressing the urgent need for innovative energy solutions amidst increasing environmental concerns, the focus on photovoltaic solar cells is intensifying. Currently limited by the Shockley-Queisser limit, conventional silicon-based solar cells offer a maximum power conversion efficiency of 32%. This limitation has inspired exploration into alternative materials such as two-dimensional multi-junction heterogeneous structures, notably two-dimensional molybdenum disulfide (2D-MoS2). With a 1.86 eV bandgap and remarkable mechanical strength, 2D-MoS2 presents a potential for higher power conversion efficiency and flexibility, with an exceptional ability to accept doping atoms. This study uses the Vienna ab initio Simulation Package to predict the performance of alloyed 2D-MoS2. Transition metals are added into the structure, with specific pairs showing a promising ability to optimize the bandgap. Hybrid density functional theory methods are used to investigate the effects of alloying on the electronic structure and optical absorption. Niobium-technetium, zirconium-ruthenium, and yttrium-rhodium alloyed 2D-MoS2 show potential for greater light absorption under natural light. The bandgap is tunable between 0.51 eV and 2.13 eV through varying alloying elements and concentrations. All structures demonstrate satisfactory thermal stability. Consequently, this alloying strategy holds potential for next-generation solar cells, though experimental testing is needed. / Att adressera det brådskande behovet av innovativa energilösningar i ljuset av ökande miljöproblem, intensifieras fokus på fotovoltaiska solceller. För närvarande begränsade av Shockley-Queisser gränsen, erbjuder konventionella kiselbaserade solceller en maximal omvandlingseffektivitet på 32%. Denna begränsning har inspirerat till utforskning av alternativa material som tvådimensionella flerleds-heterogena strukturer, framför allt 2D-MoS2. Med ett bandgap på 1.86 eV och märkbar mekanisk styrka, presenterar 2D-MoS2 en potential för högre omvandlingseffektivitet och flexibilitet, med en exceptionell förmåga att acceptera dopningsatomer. Denna studie använder Vienna ab initio Simulation Package för att förutsäga prestanda hos legerad 2D-MoS2. Övergångsmetaller läggs till i strukturen, med specifika par som visar en lovande förmåga att optimera bandgapet. Hybrid densitetsfunktionell teori metoder används för att undersöka effekterna av legering på den elektroniska strukturen och optiska absorptionen. Niobium-teknecium, zirkonium-ruthenium och yttrium-rhodium legerade 2D-MoS2 visar potential för större ljusabsorption under naturligt ljus. Bandgapet kan justeras mellan 0.51 eV och 2.13 eV genom att variera legeringselement och koncentration. Alla strukturer demonstrerar tillfredsställande termisk stabilitet. Följaktligen håller denna legeringsstrategi potential för nästa generations solceller, även om experimentell testning behövs.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-334340
Date January 2023
CreatorsLi, Mochen
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2023:439

Page generated in 0.0027 seconds