Cette thèse s'inscrit dans les domaines des systèmes Question Réponse en domaine restreint, la recherche d'information ainsi que TALN. Les systèmes de Question Réponse (QR) ont pour objectif de retrouver un fragment pertinent d'un document qui pourrait être considéré comme la meilleure réponse concise possible à une question de l'utilisateur. Le but de cette thèse est de proposer une approche de localisation de réponses dans des masses de données complexes et évolutives décrites ci-dessous.. De nos jours, dans de nombreux domaines d'application, les systèmes informatiques sont instrumentés pour produire des rapports d'événements survenant, dans un format de données textuelles généralement appelé fichiers log. Les fichiers logs représentent la source principale d'informations sur l'état des systèmes, des produits, ou encore les causes de problèmes qui peuvent survenir. Les fichiers logs peuvent également inclure des données sur les paramètres critiques, les sorties de capteurs, ou une combinaison de ceux-ci. Ces fichiers sont également utilisés lors des différentes étapes du développement de logiciels, principalement dans l'objectif de débogage et le profilage. Les fichiers logs sont devenus un élément standard et essentiel de toutes les grandes applications. Bien que le processus de génération de fichiers logs est assez simple et direct, l'analyse de fichiers logs pourrait être une tâche difficile qui exige d'énormes ressources de calcul, de temps et de procédures sophistiquées. En effet, il existe de nombreux types de fichiers logs générés dans certains domaines d'application qui ne sont pas systématiquement exploités d'une manière efficace en raison de leurs caractéristiques particulières. Dans cette thèse, nous nous concentrerons sur un type des fichiers logs générés par des systèmes EDA (Electronic Design Automation). Ces fichiers logs contiennent des informations sur la configuration et la conception des Circuits Intégrés (CI) ainsi que les tests de vérification effectués sur eux. Ces informations, très peu exploitées actuellement, sont particulièrement attractives et intéressantes pour la gestion de conception, la surveillance et surtout la vérification de la qualité de conception. Cependant, la complexité de ces données textuelles complexes, c.-à-d. des fichiers logs générés par des outils de conception de CI, rend difficile l'exploitation de ces connaissances. Plusieurs aspects de ces fichiers logs ont été moins soulignés dans les méthodes de TALN et Extraction d'Information (EI). Le grand volume de données et leurs caractéristiques particulières limitent la pertinence des méthodes classiques de TALN et EI. Dans ce projet de recherche nous cherchons à proposer une approche qui permet de répondre à répondre automatiquement aux questionnaires de vérification de qualité des CI selon les informations se trouvant dans les fichiers logs générés par les outils de conception. Au sein de cette thèse, nous étudions principalement "comment les spécificités de fichiers logs peuvent influencer l'extraction de l'information et les méthodes de TALN?". Le problème est accentué lorsque nous devons également prendre leurs structures évolutives et leur vocabulaire spécifique en compte. Dans ce contexte, un défi clé est de fournir des approches qui prennent les spécificités des fichiers logs en compte tout en considérant les enjeux qui sont spécifiques aux systèmes QR dans des domaines restreints. Ainsi, les contributions de cette thèse consistent brièvement en :〉Proposer une méthode d'identification et de reconnaissance automatique des unités logiques dans les fichiers logs afin d'effectuer une segmentation textuelle selon la structure des fichiers. Au sein de cette approche, nous proposons un type original de descripteur qui permet de modéliser la structure textuelle et le layout des documents textuels.〉Proposer une approche de la localisation de réponse (recherche de passages) dans les fichiers logs. Afin d'améliorer la performance de recherche de passage ainsi que surmonter certains problématiques dûs aux caractéristiques des fichiers logs, nous proposons une approches d'enrichissement de requêtes. Cette approches, fondée sur la notion de relevance feedback, consiste en un processus d'apprentissage et une méthode de pondération des mots pertinents du contexte qui sont susceptibles d'exister dans les passage adaptés. Cela dit, nous proposons également une nouvelle fonction originale de pondération (scoring), appelée TRQ (Term Relatedness to Query) qui a pour objectif de donner un poids élevé aux termes qui ont une probabilité importante de faire partie des passages pertinents. Cette approche est également adaptée et évaluée dans les domaines généraux.〉Etudier l'utilisation des connaissances morpho-syntaxiques au sein de nos approches. A cette fin, nous nous sommes intéressés à l'extraction de la terminologie dans les fichiers logs. Ainsi, nous proposons la méthode Exterlog, adaptée aux spécificités des logs, qui permet d'extraire des termes selon des patrons syntaxiques. Afin d'évaluer les termes extraits et en choisir les plus pertinents, nous proposons un protocole de validation automatique des termes qui utilise une mesure fondée sur le Web associée à des mesures statistiques, tout en prenant en compte le contexte spécialisé des logs. / In this thesis, we present contributions to the challenging issues which are encounteredin question answering and locating information in complex textual data, like log files. Question answering systems (QAS) aim to find a relevant fragment of a document which could be regarded as the best possible concise answer for a question given by a user. In this work, we are looking to propose a complete solution to locate information in a special kind of textual data, i.e., log files generated by EDA design tools.Nowadays, in many application areas, modern computing systems are instrumented to generate huge reports about occurring events in the format of log files. Log files are generated in every computing field to report the status of systems, products, or even causes of problems that can occur. Log files may also include data about critical parameters, sensor outputs, or a combination of those. Analyzing log files, as an attractive approach for automatic system management and monitoring, has been enjoying a growing amount of attention [Li et al., 2005]. Although the process of generating log files is quite simple and straightforward, log file analysis could be a tremendous task that requires enormous computational resources, long time and sophisticated procedures [Valdman, 2004]. Indeed, there are many kinds of log files generated in some application domains which are not systematically exploited in an efficient way because of their special characteristics. In this thesis, we are mainly interested in log files generated by Electronic Design Automation (EDA) systems. Electronic design automation is a category of software tools for designing electronic systems such as printed circuit boards and Integrated Circuits (IC). In this domain, to ensure the design quality, there are some quality check rules which should be verified. Verification of these rules is principally performed by analyzing the generated log files. In the case of large designs that the design tools may generate megabytes or gigabytes of log files each day, the problem is to wade through all of this data to locate the critical information we need to verify the quality check rules. These log files typically include a substantial amount of data. Accordingly, manually locating information is a tedious and cumbersome process. Furthermore, the particular characteristics of log files, specially those generated by EDA design tools, rise significant challenges in retrieval of information from the log files. The specific features of log files limit the usefulness of manual analysis techniques and static methods. Automated analysis of such logs is complex due to their heterogeneous and evolving structures and the large non-fixed vocabulary.In this thesis, by each contribution, we answer to questions raised in this work due to the data specificities or domain requirements. We investigate throughout this work the main concern "how the specificities of log files can influence the information extraction and natural language processing methods?". In this context, a key challenge is to provide approaches that take the log file specificities into account while considering the issues which are specific to QA in restricted domains. We present different contributions as below:> Proposing a novel method to recognize and identify the logical units in the log files to perform a segmentation according to their structure. We thus propose a method to characterize complex logicalunits found in log files according to their syntactic characteristics. Within this approach, we propose an original type of descriptor to model the textual structure and layout of text documents.> Proposing an approach to locate the requested information in the log files based on passage retrieval. To improve the performance of passage retrieval, we propose a novel query expansion approach to adapt an initial query to all types of corresponding log files and overcome the difficulties like mismatch vocabularies. Our query expansion approach relies on two relevance feedback steps. In the first one, we determine the explicit relevance feedback by identifying the context of questions. The second phase consists of a novel type of pseudo relevance feedback. Our method is based on a new term weighting function, called TRQ (Term Relatedness to Query), introduced in this work, which gives a score to terms of corpus according to their relatedness to the query. We also investigate how to apply our query expansion approach to documents from general domains.> Studying the use of morpho-syntactic knowledge in our approaches. For this purpose, we are interested in the extraction of terminology in the log files. Thus, we here introduce our approach, named Exterlog (EXtraction of TERminology from LOGs), to extract the terminology of log files. To evaluate the extracted terms and choose the most relevant ones, we propose a candidate term evaluation method using a measure, based on the Web and combined with statistical measures, taking into account the context of log files.
Identifer | oai:union.ndltd.org:theses.fr/2011MON20092 |
Date | 02 December 2011 |
Creators | Saneifar, Hassan |
Contributors | Montpellier 2, Poncelet, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds