Return to search

Contributions de l'inférence grammaticale à la fouille de données séquentielles

Dans le cadre de cette thèse, nous avons établi des liens entre les modèles obtenus par des algorithmes d'inférence grammaticale et la connaissance induite par des techniques de fouille de données séquentielles. Partant du constat que le point commun entre ces deux contextes différents de travail est la manipulation de données structurées sous forme de séquences de symboles, nous avons tenté d'exploiter les propriétés des automates probabilistes inférés à partir de ces séquences au profit d'une fouille de données séquentielles plus efficace. <br />Dans ce contexte, nous avons montré que l'exploitation brute, non seulement des séquences d'origine mais aussi des automates probabilistes inférés à partir de celles-ci, ne garantit pas forcément une extraction de connaissance pertinente. Nous avons apporté dans cette thèse plusieurs contributions, sous la forme de bornes minimales et de contraintes statistiques, permettant ainsi d'assurer une exploitation fructueuse des séquences et des automates probabilistes. De plus, grâce à notre modèle nous apportons une solution efficace à certaines applications mettant en jeux des problèmes de préservation de vie privée des individus.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00366358
Date04 December 2008
CreatorsJacquemont, Stéphanie
PublisherUniversité Jean Monnet - Saint-Etienne
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds