Return to search

Degree Of Aproximation Of Hölder Continuous Functions

Pratima Sadangi in a Ph.D. thesis submitted to Utkal University proved results on degree of approximation of functions by operators associated with their Fourier series. In this dissertation, we consider degree of approximation of functions in Hα,ρ by different operators. In Chapter 1 we mention basic definitions needed for our work. In Chapter 2 we discuss different methods of summation. In Chapter 3 we define the Hα,ρ metric and present the degree of approximation problem relating to Fourier series and conjugate series of functions in the Hα,ρ metric using Karamata (Κλ) means. In Chapter 4 we present the degree of approximation of an integral associated with the conjugate series by the Euler, Borel and (e,c) means of a series analogous to the Hardy-Littlewood series in the Hα,ρ metric. In Chapter 5 we propose problems to be solved in the future.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4692
Date01 January 2008
CreatorsLandon, Benjamin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0018 seconds