Return to search

Identification of bacteria by infrared imaging with the use of focal plane array Fourier transform infrared spectroscopy

The application of infrared imaging employing focal plane array Fourier transform infrared (FPA-FTIR) instrumentation for the identification of bacteria was investigated. FPA-FTIR spectroscopy was shown to provide new opportunities for bacteria identification with unprecedented reliability and throughput by allowing 102--103 FTIR spectra to be acquired simultaneously from surface areas of 90 x 90 to 200 x 200 mum with a spatial resolution of ∼6 mum. The combination of data redundancy and spatial resolution afforded by infrared imaging made it possible to acquire highly reproducible spectra from bacterial films. A protocol for enhancing the reliability of bacteria identification by transmission-mode FPA-FTIR spectroscopy was developed by optimizing spectral acquisition parameters, spectral processing and data analysis; using the differentiation of two Campylobacter species as a test case. The results for this test case were compared with those obtained from three alternate FTIR spectral acquisition modes. The optimized protocol was employed for the generation of a spectral database of foodborne bacteria, containing over 1,000,000 spectra acquired by infrared imaging of 36 species from 19 genera. The development of a modular hierarchical clustering (MHC) model, in combination with the use of a region selection algorithm, allowed all species in the database to be differentiated from each other down to the species level based on differences in their infrared absorption profiles. A validation study involving the identification of well-characterized isolates by comparison of their spectra to those in the database demonstrated the robustness of the MHC model. In a further study employing 44 strains of Clostridium botulinum, the discriminatory power of FPA-FTIR spectroscopy was compared with that of pulsed-field gel electrophoresis, and the region selection algorithm was applied to identify growth medium-independent spectral regions that allowed for the differentiation of Group I and Group II C. botulinum strains in two blind validation studies. The research carried out also demonstrated the high-throughput potential of bacteria identification by infrared imaging when combined with the use of a microarray system for sample deposition. Overall, the novel FPA-FTIR spectroscopy-based bacteria identification protocol developed in this work provides a rapid-response and reagent-free technique suitable for routine use in both food and clinical microbiology laboratories.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111855
Date January 2007
CreatorsPrévost Kirkwood, Jonah.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Food Science and Agricultural Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002611006, proquestno: AAINR32318, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds