L'échocardiographie est une modalité d'imagerie sûre, non-invasive, qui est utilisée pour évaluer la fonction et l'anatomie cardiaque en routine clinique. Mais la cadence maximale d’imagerie atteinte est limitée en raison de la vitesse limitée du son. Afin d’augmenter la fréquence d'image, l'utilisation d’ondes planes ou d’ondes divergentes en transmissinon a été proposée afin de réduire le nombre de tirs nécessaires à la reconstruction d'une image. L'objectif de cette thèse consiste à développer un procédé d'imagerie par ultrasons ultra-rapide en échocardiographie 2/3D basé sur une insonification par ondes divergentes et réalisant une reconstruction dans le domaine de Fourier. Les contributions principales obtenues au cours de la thèse sont décrites ci-dessous. La première contribution de cette thèse concerne un schéma de transmission dichotomique pour l'acquisition linéaire en analysant mathématiquement la pression générée. Nous avons ensuite montré que ce système de transmission peut améliorer la qualité des images reconstruites pour une cadence constante en utilisant les algorithmes de reconstruction conventionnels. La qualité des images reconstruites a été évaluée en termes de résolution et de contraste au moyen de simulations et acquisitions expérimentales réalisées sur des fantômes. La deuxième contribution concerne le développement d'une nouvelle méthode d'imagerie 2D en ondes plane opérant dans le domaine de Fourier et basée sur le théorème de la coupe centrale. Les résultats que nous avons obtenus montrent que l'approche proposée fournit des résultats très proches de ceux fournit par les méthodes classiques en termes de résolution latérale et contraste de l'image. La troisième contribution concerne le développement d'une transformation spatiale explicite permettant d'étendre les méthodes 2D opérant dans le domaine de Fourier d'une acquisition en géométrie linéaire avec des ondes planes à la géométrie sectorielle avec des ondes divergente en transmission. Les résultats que nous avons obtenus à partir de simulations et d'acquisitions expérimentales in vivo montrent que l'application de cette extension à la méthode de Lu permet d'obtenir la même qualité d’image que la méthode spatiale de Papadacci basée sur des ondes divergentes, mais avec une complexité de calcul plus faible. Finalement, la formulation proposée en 2D pour les méthodes ultra-rapides opérant dans le domaine de Fourier ont été étendues en 3D. L'approche proposée donne des résultats compétitifs associés à une complexité de calcul beaucoup plus faible par rapport à la technique de retard et somme conventionnelle. / Three-dimensional echocardiography is one of the most widely used modality in real time heart imaging thanks to its noninvasive and low cost. However, the real-time property is limited because of the limited speed of sound. To increase the frame rate, plane wave and diverging wave in transmission have been proposed to drastically reduce the number of transmissions to reconstruct one image. In this thesis, starting with the 2D plane wave imaging methods, the reconstruction of 2D/3D echocardiographic sequences in Fourier domain using diverging waves is addressed. The main contributions are as follows: The first contribution concerns the study of the influence of transmission scheme in the context of 2D plane wave imaging. A dichotomous transmission scheme was proposed. Results show that the proposed scheme allows the improvement of the quality of the reconstructed B-mode images at a constant frame rate. Then we proposed an alternative Fourier-based plane wave imaging method (i.e. Ultrasound Fourier Slice Beamforming). The proposed method was assessed using numerical simulations and experiments. Results revealed that the method produces very competitive image quality compared to the state-of-the-art methods. The third contribution concerns the extension of Fourier-based plane wave imaging methods to sectorial imaging in 2D. We derived an explicit spatial transformation which allows the extension of the current Fourier-based plane wave imaging techniques to the reconstruction of sectorial scan using diverging waves. Results obtained from simulations and experiments show that the derived methods produce competitive results with lower computational complexity when compared to the conventional delay and sum (DAS) technique. Finally, the 2D Fourier-based diverging wave imaging methods are extended to 3D. Numerical simulations were performed to evaluate the proposed method. Results show that the proposed approach provides competitive scores in terms of image quality compared to the DAS technique, but with a much lower computational complexity.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEI144 |
Date | 16 December 2016 |
Creators | Zhang, Miaomiao |
Contributors | Lyon, Bernard, Olivier, Friboulet, Denis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds